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Why sterile neutrinos
We want to study light sterile neutrinos     .νs

O(eV) - spin 1/2 fermions, 
- neutral under SM forces, 
- mix with active neutrinos. 

(why light?)
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Why sterile neutrinos
We want to study light sterile neutrinos     .νs

O(eV) - spin 1/2 fermions, 
- neutral under SM forces, 
- mix with active neutrinos. 

Because: - subdominant  solar/atmo effects

right-handed neutrino

- LSND/MiniBooNE

axino

goldstino
majorino

branino
dilatino

modulino
familino

mirror fermion...

- predicted in beyond SM models

- invoked in phenomenology

The discovery of a new light particle would be fundamental.

pulsar kicks
r-process nucleosynthesis

galactic ionization
solar neutrino modulation...

(why light?)



3+1= 4 neutrino mixing
Instead of a limited 2    formalism νl → cos θsνl′ + sin θsνs

ν

we want a full 4    formalism, including active-active oscillations.ν

A simple parametrization: unit vector      identifies a combination of!n

!n · !ν = neνe + nµνµ + nτντ = n1ν1 + n2ν2 + n3ν3

which mixes with       with an angle       ,νs θs
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Figure 1: Basic kinds of four neutrino mass spectra. Left: sterile mixing with a flavour
eigenstate (νµ in the picture). Right: sterile mixing with a mass eigenstate (ν2 in the picture).

We think that our parametrization of sterile mixing, in eq. (1), makes physics more transparent
than other frequently used choices3.

The oscillation probabilities among active neutrinos in the limit where the active/sterile mass
splitting dominates, and active/active mass splittings can be neglected, are

P (ν! → ν!′) = P (ν̄! → ν̄!′) =

{

1 − 4|V 2
!4|(1 − |V 2

!4|) sin2(∆m2
14L/4Eν) for " = "′

4|V 2
!4||V 2

!′4| sin2(∆m2
14L/4Eν) for " #= "′

(2)

and in our parametrization V!4 = n∗
! sin θs.

Older papers studied active/sterile mixing in 2 neutrino approximation. In such a case
θs = π/2 gives no oscillation effect. On the contrary, in the full 4 neutrino case θs = π/2 swaps
the sterile neutrino with one active neutrino. (e.g. νµ in fig. 1a or ν2 in fig. 1b, if θs were there
increased up to π/2) affecting solar and atmospheric oscillations in an obvious way. Therefore
large active/sterile mixing is excluded by experiments for all values of ∆m2

i4 ≡ m2
4 − m2

i (with
one exception: the sterile neutrino mixes with a mass eigenstate νi and the two states form a
quasi-degenerate pair. This structure arises naturally in certain models [5]).

In order to explore a more interesting slice of parameter space when considering sterile mixing
with a mass eigenstate νi, for θs > π/4 we modify the spectrum of neutrino masses and replace
(m2

i , m
2
4) with (2m2

i − m2
4, m

2
i ). In such a way, the mostly active state always keeps the same

squared mass (that we fix to its experimental value), so that in the limit θs = π/2 the sterile
neutrino gives no effect rather than giving an already excluded effect. Physically, in our νs/νi

3When studying sterile mixing with a flavour eigenstate our expression is directly related to the ‘standard’
parameterization

V = R34R24R14 · U23U13U12

where Rij represents a rotation in the ij plane by angle θij and Uij a complex rotation in the ij plane. θ14 or
Ue4 gives rise to νe/νs mixing, θ24 or Uµ4 to νµ/νs mixing, and θ34 or Uτ4 to ντ/νs mixing.

The above ‘standard’ parameterization becomes inconvenient when studying mixing with a mass eigenstate.
In such a case our parameterization is directly related to the alternative ‘standard’ parameterization appropriate
for this case,

V = U23U13U12 · R34R24R14

Now θi4 gives rise to νi/νs mixing. Our parameterization instead is convenient because it remains simple in both
cases.
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Sterile neutrinos in cosmology
Neutrinos are important in the Early Universe because they are:

- a lot (as abundant as photons)
- the main component of the (relativistic) energy density
  that sets the expansion scale
- shaping the growth of galaxies via their free-streaming

An extra       can make a big difference.νs



Bounds come: from BBN

Bounds come: from later cosmology (CMB, LSS)

- T      MeV
- flavor is important
- matter effects in the plasma

∼

- T      eV
-        is importantmν

!

Neutrinos are important in the Early Universe because they are:
- a lot (as abundant as photons)
- the main component of the (relativistic) energy density
  that sets the expansion scale
- shaping the growth of galaxies via their free-streaming

An extra       can make a big difference.νs

Sterile neutrinos in cosmology
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Big Bang Nucleosynthesis

BBN

n/p

4
He

3
He

3
Li

D/H

(nuclear rates, n lifetime,
weak cross sections)

Ωb

from
CMB

∆m2

s , θs

ρνe
↔ ρνµ

↔ ρντ
↔ ρνs

For any choice of               a prediction from  BBN.∆m2

s , θs



1 kinetic equations for neutrino densities

2 equation for n/p

3 equations of light nuclei (4He , D) production
      

For every choice of              , 
for T      MeV         0.07 MeV
follow:

(BBN ends, les jeux sont faits)

Assumptions:
•  no large lepton asymmetries
• neglect spectral distortions

Big Bang Nucleosynthesis

!

∆m2

s , θs

ρνe
, ρνµ

, ρντ
, ρνs

Fuller et al., 2004-2006



4x4 neutrino density matrix

diag(1,1,1,0)

3. scatterings and 
absorptions

ν thermal masses

Dolgov, 1981
Barbieri, Dolgov 1990

2. oscillations

1.expansion
Active/sterile 

mixing parametersṪ ∼ −H(T, ρ)T

Big Bang Nucleosynthesis
1. Neutrino kinetic equations

Hm =
1

2Eν

[

V diag(m2
1, m

2
2, m

2
3, m

2
4)V

† + Eνdiag(Ve, Vµ, Vτ , 0)
]

ρ

Hubble parameter
depends on

 

H = (8π/3 GN ρtot)
1/2

ρνe
+ ρνµ

+ ρντ
+ ρνs



(         )

Big Bang Nucleosynthesis
1. Neutrino kinetic equations

What happens qualitatively:

- for                 , matter effects suppress mixing

- as      decreases, at a certain point
  oscillations                      can begin

- + redistribution 

- meanwhile:    decouple at                ,         annihilate...

- Output:

T ! MeV

T

νactive ↔ νs

νactive ↔ νactive

ν T ∼ MeV e
+
e
−

ρνe
(T ), ρνµ

(T ), ρντ
(T ), ρνs

(T )

(ρνs
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depend on

Big Bang Nucleosynthesis
2. n/p ratio

Ṫ ∼ −H(T, ρ)T

Hubble parameter
depends on

 ρνe
+ ρνµ

+ ρντ
+ ρνs

weak interactions

ρνe
, ρν̄e



So, where does a       enter the game?

depend on

Big Bang Nucleosynthesis
2. n/p ratio

Ṫ ∼ −H(T, ρ)T

Hubble parameter
depends on

 ρνe
+ ρνµ

+ ρντ
+ ρνs

weak interactions

ρνe
, ρν̄e

νs

(A) total energy density      expansion parameter
(B) depletion of      density       weak rates

⇓

⇓νe
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Big Bang Nucleosynthesis
3. Light elements production

4. Observations

A network of Boltzmann equations with up-to-date nuclear rates...
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Big Bang Nucleosynthesis
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Figure 3: Cosmological effects of sterile neutrino oscillations. We compare four different
signals. The continuous red line refers to the 4He abundancy (we shaded as ‘disfavoured’ regions
where its value corresponds to Nν > 3.8), the violet dotted line to the deuterium abundancy, and
the dashed blue line to the effective number of neutrinos at recombination. We plotted isolines
of these three signals corresponding to an effective number of neutrinos Nν = 3.2 and 3.8. The
precise meaning of the parameter Nν in the three cases is explained in the text. The upper
(lower) dot-dashed orange lines corresponds to Ωνh2 = 10−2 (10−3), where Ων is the present
energy density in neutrinos.
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LSND
LSND claims evidence for                with ν̄µ → ν̄e ∆m

2 != ∆m
2
sun,

atm

Requires a new (sterile) neutrino: ν̄µ → ν̄s → ν̄e

(if oscillations)
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Bounds come: from BBN

Bounds come: from later cosmology (CMB, LSS)

- T      MeV
- flavor is important
- matter effects in the plasma

∼

- T      eV
-        is importantmν

!

Neutrinos are important in the Early Universe because they are:
- a lot (as abundant as photons)
- the main component of the (relativistic) energy density
  that sets the expansion scale
- shaping the growth of galaxies via their free-streaming

An extra       can make a big difference.νs

Sterile neutrinos in cosmology



Cosmological Perturbations
Neutrinos affect cosmological perturbations (CMB, LSS).

cosmological
perturbations

evolution

CMB

200 400 600 800 1000 1200 1400

Multipole !
0

1000

2000

3000

4000

5000

6000

!!!!"
1
"!C !TT

!i
n
ΜK

2

10$2 10$1 100

Wavenumber !k! in h! #Mpc
101

102

103

104

105

P
o
w
er
sp
ec
tr
u
m
in
!!Mpc

#!h"3

200 400 600 800 1000 1200 1400

Multipole !
0

1000

2000

3000

4000

5000

6000

!!!!"
1
"!C !TT

!i
n
ΜK

2

10$2 10$1 100

Wavenumber !k! in h! #Mpc
101

102

103

104

105

P
o
w
er
sp
ec
tr
u
m
in
!!Mpc

#!h"3 LSS

WMAP

2dF, SDSS, Ly-A

Nν∑
mν

Ωb,ΩDM, τ,

As, H0, ns



Cosmological Perturbations
Neutrinos affect cosmological perturbations (CMB, LSS).

cosmological
perturbations

evolution

CMB

200 400 600 800 1000 1200 1400

Multipole !
0

1000

2000

3000

4000

5000

6000

!!!!"
1
"!C !TT

!i
n
ΜK

2

10$2 10$1 100

Wavenumber !k! in h! #Mpc
101

102

103

104

105

P
o
w
er
sp
ec
tr
u
m
in
!!Mpc

#!h"3

200 400 600 800 1000 1200 1400

Multipole !
0

1000

2000

3000

4000

5000

6000

!!!!"
1
"!C !TT

!i
n
ΜK

2

10$2 10$1 100

Wavenumber !k! in h! #Mpc
101

102

103

104

105

P
o
w
er
sp
ec
tr
u
m
in
!!Mpc

#!h"3 LSS

WMAP

2dF, SDSS, Ly-A

∑
mν

ρνe
, ρνµ

, ρντ
, ρνs

∆m2

s , θs

Ωb,ΩDM, τ,

As, H0, ns



Cosmological Perturbations
Neutrinos affect cosmological perturbations (CMB, LSS).

cosmological
perturbations

evolution

CMB

200 400 600 800 1000 1200 1400

Multipole !
0

1000

2000

3000

4000

5000

6000

!!!!"
1
"!C !TT

!i
n
ΜK

2

10$2 10$1 100

Wavenumber !k! in h! #Mpc
101

102

103

104

105

P
o
w
er
sp
ec
tr
u
m
in
!!Mpc

#!h"3

200 400 600 800 1000 1200 1400

Multipole !
0

1000

2000

3000

4000

5000

6000

!!!!"
1
"!C !TT

!i
n
ΜK

2

10$2 10$1 100

Wavenumber !k! in h! #Mpc
101

102

103

104

105

P
o
w
er
sp
ec
tr
u
m
in
!!Mpc

#!h"3 LSS

WMAP

2dF, SDSS, Ly-A

∑
mν

Ωb,ΩDM, τ,

As, H0, ns

ρνe
, ρνµ

, ρντ
, ρνs

∆m2

s , θs

CMBfast/CAMB



Cosmological Perturbations
Neutrinos affect cosmological perturbations (CMB, LSS).
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Cosmological Perturbations
Neutrinos affect cosmological perturbations (CMB, LSS).
Neutrino free-streaming suppresses the growth of LSS on small scales:

(more precisely: massive neutrinos contribute to the energy density of the Universe 
  during MD but they don’t source in the Newton equation for          )        δdm
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Neutrinos affect cosmological perturbations (CMB, LSS).
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Neutrinos affect cosmological perturbations (CMB, LSS).
Neutrino free-streaming suppresses the growth of LSS on small scales:

(more precisely: massive neutrinos contribute to the energy density of the Universe 
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Figure 3: Cosmological effects of sterile neutrino oscillations. We compare four different
signals. The continuous red line refers to the 4He abundancy (we shaded as ‘disfavoured’ regions
where its value corresponds to Nν > 3.8), the violet dotted line to the deuterium abundancy, and
the dashed blue line to the effective number of neutrinos at recombination. We plotted isolines
of these three signals corresponding to an effective number of neutrinos Nν = 3.2 and 3.8. The
precise meaning of the parameter Nν in the three cases is explained in the text. The upper
(lower) dot-dashed orange lines corresponds to Ωνh2 = 10−2 (10−3), where Ων is the present
energy density in neutrinos.
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(
Open a parenthesis:



(
Open a parenthesis:

What if there is a large 
primordial lepton asymmetry?

Lν =

nν − nν̄

nγ

Foot, Volkas PRL 75 (1995)
P.Di Bari (2002, 2003)
V.Barger et al., PLB 569 (2003)
...

Dolgov,..., Semikoz (2002) 
Abazajian, Beacom, Bell (2002)
Cuoco,..., Serpico (2004) 
Serpico, Raffelt (2005)

An asymmetry                           (baryon asym.)
would be natural,
but a priori                        is possible.

Lν ≈ η = 6 10−10

Lν ∼ O(10−2)



postulating a primordial 
asymmetry                       .                 

reconciles LSND and cosmology

Portions of the parameter space are reopened:
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Due to matter effects,      are less efficiently produced.νs
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)
Back to standard cosmology.



                                       sets the total relativistic energy content and 
affects the peaks of CMB and LSS spectra:

Cosmological Perturbations
Neutrinos affect cosmological perturbations (CMB, LSS).
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Caveat: plots for illustrative purposes only, 
all parameters except          are held fixed.Nν

Nν = 5 ± 1

BUT dropping Ly-alpha gives back

Nν ! 3

a bound on        :

Cirelli, Strumia 2006

⇓

Nν

⇓

(@ 95% C.L., 
global fit)

= ρνe
+ ρνµ

+ ρντ
+ ρνs

CMB/LSS currently give a
 weak/unsafe bound on      , 

but in the future...

Nν

Nν

Seljak et al. 2006
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Figure 3: Cosmological effects of sterile neutrino oscillations. We compare four different
signals. The continuous red line refers to the 4He abundancy (we shaded as ‘disfavoured’ regions
where its value corresponds to Nν > 3.8), the violet dotted line to the deuterium abundancy, and
the dashed blue line to the effective number of neutrinos at recombination. We plotted isolines
of these three signals corresponding to an effective number of neutrinos Nν = 3.2 and 3.8. The
precise meaning of the parameter Nν in the three cases is explained in the text. The upper
(lower) dot-dashed orange lines corresponds to Ωνh2 = 10−2 (10−3), where Ων is the present
energy density in neutrinos.
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Overall picture confirmed 
by SN1987a

Set present 
bounds

Thousands of events from 
future SN

Propose future 
probes

Neutrinos from SNe:
    - are a lot (99% of emitted energy)
    - undergo “extreme” matter effects
    - come from very far away (  10 kpc)
    - have the right energy (  10 MeV) for present detectors

∼

∼

An extra       can make a big difference.νs

Sterile neutrinos in SNe
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Matter eigenstates in the mantle:
Sterile neutrinos in SNe



Matter eigenstates in the mantle:

At each crossing:
crossing probability

“lost”

Sterile neutrinos in SNe



Output: final fluxes of νe, νµ and ντ on Earth . 

Matter eigenstates in the mantle:

At each crossing:
crossing probability

“lost”

Sterile neutrinos in SNe



50

(Beware of
theoretical 

uncertainties…)

excludedSN1987a neutrinos 
observed
⇓

a bound on the 
loss of     :            . ν̄e ! 70%

(ν̄ep → ne
+)

excluded

excludedLarge portions 
can be probed.

Sterile neutrinos in SNe

C
ir

el
li

, M
ar

an
d

el
la

, S
tr

u
m

ia
, V

is
sa

n
i 2

0
0

4



The energy dependance of matter/vacuum 
conversions causes spectral distortions:

Possible very clear feature.

Sterile neutrinos in SNe
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Not a very interesting probe.

Neutrinos from 
extragalactic sources

- produced in high-energy astrophysical processes
- expected flavor ratios at production
                                    after (active) oscillations

νe : νµ : ντ = 1 : 2 : 0

1 : 1 : 1

An extra       can produce an unbalance.νs

BUT: - initial fluxes totally unknown
- sterile effects have to be small
- we tag      and     , which balance anywayνµ ντ
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Sterile neutrinos in the Sun
Solar neutrinos:
    - are a lot, and well studied
    - undergo matter effects in the Sun and the Earth
    - come from far away (  150 Mkm)∼

An extra       can make a difference.νs



Dominant                   is excluded by SNO (and SK).

Look for subdominant sterile effects,
on top of LMA-MSW                      .

νe → νs

νe → νµ,τ

(i.e. technically, marginalizing over                                                             ,                                              parameters)

Sterile neutrinos in the Sun
Solar neutrinos:
    - are a lot, and well studied
    - undergo matter effects in the Sun and the Earth
    - come from far away (  150 Mkm)∼

An extra       can make a difference.νs

∆m
2
12 = (8.0 ± 0.3) · 10−5eV2 tan2 θ12 = 0.45 ± 0.05



Sterile neutrinos in the Sun
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- input      fluxes (spectrum, production regions)

- crossings in Sun’s matter
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Computation:



Computation:

SNO D2O (CC, NC, ES d/n spectra)
SNO salt (CC, NC, ES rates)
SK (ES spectra w zenith)
SAGE + Gallex + GNO (Ga)
Homestake (Cl)
KamLAND (reactor       spectra)
SSM prediction for 8B flux (not critical)

Sterile neutrinos in the Sun

- input      fluxes (spectrum, production regions)

- crossings in Sun’s matter
- vacuum oscillations
- matter oscillations in Earth
- fit dataset:  
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Figure 5: Level crossing schemes. The right plot shows qualitatively the effective anti-neutrino
masses in a supernova. The left plot shows the effective neutrino masses in the sun. We as-
sumed hierarchical active neutrinos (i.e. m1 = 0 and m2 = (∆m2

sun)
1/2) and plotted the two

matter eigenstates that give rise to LMA oscillations for two different values of Eν : 10 MeV and
0.86 MeV, the energy of the main Beryllium line. Colors indicate the flavour composition. An
extra sterile neutrino with small mixing is represented by an horizontal line with height equal to
its mass.

matter effects are negligible and one gets averaged vacuum oscillations, Pee = 1 − 1
2 sin2 2θsun.

This energy range has been explored by Gallium experiments.

We now discuss how to understand qualitatively the sterile/active mixing effects [23]. If
sterile/active mixing is small, the mostly νs state is represented by adding one quasi-horizontal
line to fig. 5a. Depending on its height (determined by the mass of the sterile neutrino) the
mostly sterile level crosses one or none of the two mostly active neutrinos (for all relevant neutrino
energies the sterile state does not cross both active neutrinos) after or before the LMA resonance
(or after and before). In each case one can understand the behavior of the survival probabilities
from the level-crossing scheme: in the example plotted in fig. 5a a neutrino produced at r0 ≈ 0.2
experiences a single level crossing at r1 ≈ 0.3. This example corresponds to the case considered
in [40]: a sterile neutrino weakly mixed with ν1, with mass splitting ∆m2

14 somewhat smaller
than ∆m2

12. A solar νe produced at r ∼ 0.2Rsun contains a ν1m component that crosses the νs

state once, getting partially converted into νs. This gives a dip in the survival probability at
intermediate energies: at low energies one has averaged vacuum oscillations (negligibly affected
by the small sterile mixing angle), at high energies matter effects dominate so that νe $ ν2m that
does not cross the sterile level. Fig. 7A,B show examples of this behavior. Even sticking to the
case of νs/ν1 mixing, qualitatively different effects are present for other values of the oscillation
parameters, studied in fig. 6a. E.g. the example in fig. 7D illustrates the case discussed in [41, 7]:
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Figure 5: Level crossing schemes. The right plot shows qualitatively the effective anti-neutrino
masses in a supernova. The left plot shows the effective neutrino masses in the sun. We as-
sumed hierarchical active neutrinos (i.e. m1 = 0 and m2 = (∆m2

sun)
1/2) and plotted the two

matter eigenstates that give rise to LMA oscillations for two different values of Eν : 10 MeV and
0.86 MeV, the energy of the main Beryllium line. Colors indicate the flavour composition. An
extra sterile neutrino with small mixing is represented by an horizontal line with height equal to
its mass.

matter effects are negligible and one gets averaged vacuum oscillations, Pee = 1 − 1
2 sin2 2θsun.

This energy range has been explored by Gallium experiments.

We now discuss how to understand qualitatively the sterile/active mixing effects [23]. If
sterile/active mixing is small, the mostly νs state is represented by adding one quasi-horizontal
line to fig. 5a. Depending on its height (determined by the mass of the sterile neutrino) the
mostly sterile level crosses one or none of the two mostly active neutrinos (for all relevant neutrino
energies the sterile state does not cross both active neutrinos) after or before the LMA resonance
(or after and before). In each case one can understand the behavior of the survival probabilities
from the level-crossing scheme: in the example plotted in fig. 5a a neutrino produced at r0 ≈ 0.2
experiences a single level crossing at r1 ≈ 0.3. This example corresponds to the case considered
in [40]: a sterile neutrino weakly mixed with ν1, with mass splitting ∆m2

14 somewhat smaller
than ∆m2

12. A solar νe produced at r ∼ 0.2Rsun contains a ν1m component that crosses the νs

state once, getting partially converted into νs. This gives a dip in the survival probability at
intermediate energies: at low energies one has averaged vacuum oscillations (negligibly affected
by the small sterile mixing angle), at high energies matter effects dominate so that νe $ ν2m that
does not cross the sterile level. Fig. 7A,B show examples of this behavior. Even sticking to the
case of νs/ν1 mixing, qualitatively different effects are present for other values of the oscillation
parameters, studied in fig. 6a. E.g. the example in fig. 7D illustrates the case discussed in [41, 7]:
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Figure 5: Level crossing schemes. The right plot shows qualitatively the effective anti-neutrino
masses in a supernova. The left plot shows the effective neutrino masses in the sun. We as-
sumed hierarchical active neutrinos (i.e. m1 = 0 and m2 = (∆m2

sun)
1/2) and plotted the two

matter eigenstates that give rise to LMA oscillations for two different values of Eν : 10 MeV and
0.86 MeV, the energy of the main Beryllium line. Colors indicate the flavour composition. An
extra sterile neutrino with small mixing is represented by an horizontal line with height equal to
its mass.

matter effects are negligible and one gets averaged vacuum oscillations, Pee = 1 − 1
2 sin2 2θsun.

This energy range has been explored by Gallium experiments.

We now discuss how to understand qualitatively the sterile/active mixing effects [23]. If
sterile/active mixing is small, the mostly νs state is represented by adding one quasi-horizontal
line to fig. 5a. Depending on its height (determined by the mass of the sterile neutrino) the
mostly sterile level crosses one or none of the two mostly active neutrinos (for all relevant neutrino
energies the sterile state does not cross both active neutrinos) after or before the LMA resonance
(or after and before). In each case one can understand the behavior of the survival probabilities
from the level-crossing scheme: in the example plotted in fig. 5a a neutrino produced at r0 ≈ 0.2
experiences a single level crossing at r1 ≈ 0.3. This example corresponds to the case considered
in [40]: a sterile neutrino weakly mixed with ν1, with mass splitting ∆m2

14 somewhat smaller
than ∆m2

12. A solar νe produced at r ∼ 0.2Rsun contains a ν1m component that crosses the νs

state once, getting partially converted into νs. This gives a dip in the survival probability at
intermediate energies: at low energies one has averaged vacuum oscillations (negligibly affected
by the small sterile mixing angle), at high energies matter effects dominate so that νe $ ν2m that
does not cross the sterile level. Fig. 7A,B show examples of this behavior. Even sticking to the
case of νs/ν1 mixing, qualitatively different effects are present for other values of the oscillation
parameters, studied in fig. 6a. E.g. the example in fig. 7D illustrates the case discussed in [41, 7]:
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Sterile neutrinos in the Sun
evolve the 4x4 neutrino density matrix      
from production to detection

ρFormalism:
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Sterile neutrinos in the Sun
evolve the 4x4 neutrino density matrix      
from production to detection

ρFormalism:
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Sterile neutrinos in the Sun
evolve the 4x4 neutrino density matrix      
from production to detection

ρFormalism:

νµ ντ νs

(Eν , r)

ρfin = V · UearthUvacUsun · V †
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Back to flavor basis:
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V 4x4 mixing matrix in matter
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From the final, evolved       : oscillation quantities:ρfin

P (νe → νe) = ρee P (νe → νs) = ρes etc.
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Sterile neutrinos in the Sun
What is the “still allowed component” of sterile in solar neutrinos?



Sterile neutrinos in the Sun
What is the “still allowed component” of sterile in solar neutrinos?
You mean the limit case νe → cos θs νµ,τ + sin θs νs (with large           , 

energy-indep. 
oscillations)

∆m
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νs/νµ,τ
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Sterile neutrinos in atmo+LBL
Atmospheric neutrinos:
    - are a lot, and well studied
    - may undergo matter effects in Earth (but no resonances)
    - are detected via NC and CC 

An extra       can make a difference.νs



Dominant                   is excluded.

Look for subdominant sterile effects, on top of                 . .

(i.e. technically, marginalizing over                                                             ,                                              parameters)

Sterile neutrinos in atmo+LBL

νµ → νs

∆m
2

23 = (2.5 ± 0.2) · 10−3 eV2
sin

2
2θ23 = 1.02 ± 0.04

Atmospheric neutrinos:
    - are a lot, and well studied
    - may undergo matter effects in Earth (but no resonances)
    - are detected via NC and CC 

An extra       can make a difference.νs

[details]

νµ → ντ

None found. Exclusion regions.

Dataset: SK + Macro + K2K.

⇓
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Figure 12: Sterile mixing: effects in atmospheric neutrinos (SK, MACRO) and K2K.
No statistically significant evidence is found. Shaded regions: excluded at 90, 99% C.L. Coloured
lines are iso-curves of a few promising signals. Blue dashed lines: 5% and 1% reduction of the
NC rate at MINOS. Green dot-dashed lines: Peµ = 0.01. Red dotted lines: |∆Pµτ | = 0.01 at
CNGS.

sterile effects detectable by the experiments discussed in this section are already disfavoured by
measurements of the primordial 4He abundancy, and can be fully tested by future CMB or BBN
data.

A detailed analysis of capabilities of future beam or reactor neutrinos as probes of sterile neu-
trinos seems not necessary. In fact, there are many proposals motivated by other considerations,
and in each case it is easy to compute sterile effects. We only make a few general comments.

The blue dashed line in fig.s 11 shows what can achieved by a future high-precision short-
baseline reactor experiment able of detecting a 2% deficit in the ν̄e flux [82]. Sterile oscillations
give a ν̄e deficit, which might be energy-dependent if the sterile oscillation length at Eν ∼
few MeV is comparable to the base-line L. Both are unknown; we assumed L ∼ 2 km. Most of
the explorable region at small ∆m2 is already excluded by solar and atmospheric experiments.
The region with large ∆m2 ∼ eV2 is more difficult because even a near detector only sees
averaged oscillations; one has to rely on theoretical predictions for the total flux of reactor
ν̄e [83].
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Figure 12: Sterile mixing: effects in atmospheric neutrinos (SK, MACRO) and K2K.
No statistically significant evidence is found. Shaded regions: excluded at 90, 99% C.L. Coloured
lines are iso-curves of a few promising signals. Blue dashed lines: 5% and 1% reduction of the
NC rate at MINOS. Green dot-dashed lines: Peµ = 0.01. Red dotted lines: |∆Pµτ | = 0.01 at
CNGS.

sterile effects detectable by the experiments discussed in this section are already disfavoured by
measurements of the primordial 4He abundancy, and can be fully tested by future CMB or BBN
data.

A detailed analysis of capabilities of future beam or reactor neutrinos as probes of sterile neu-
trinos seems not necessary. In fact, there are many proposals motivated by other considerations,
and in each case it is easy to compute sterile effects. We only make a few general comments.

The blue dashed line in fig.s 11 shows what can achieved by a future high-precision short-
baseline reactor experiment able of detecting a 2% deficit in the ν̄e flux [82]. Sterile oscillations
give a ν̄e deficit, which might be energy-dependent if the sterile oscillation length at Eν ∼
few MeV is comparable to the base-line L. Both are unknown; we assumed L ∼ 2 km. Most of
the explorable region at small ∆m2 is already excluded by solar and atmospheric experiments.
The region with large ∆m2 ∼ eV2 is more difficult because even a near detector only sees
averaged oscillations; one has to rely on theoretical predictions for the total flux of reactor
ν̄e [83].
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Figure 12: Sterile mixing: effects in atmospheric neutrinos (SK, MACRO) and K2K.
No statistically significant evidence is found. Shaded regions: excluded at 90, 99% C.L. Coloured
lines are iso-curves of a few promising signals. Blue dashed lines: 5% and 1% reduction of the
NC rate at MINOS. Green dot-dashed lines: Peµ = 0.01. Red dotted lines: |∆Pµτ | = 0.01 at
CNGS.

sterile effects detectable by the experiments discussed in this section are already disfavoured by
measurements of the primordial 4He abundancy, and can be fully tested by future CMB or BBN
data.

A detailed analysis of capabilities of future beam or reactor neutrinos as probes of sterile neu-
trinos seems not necessary. In fact, there are many proposals motivated by other considerations,
and in each case it is easy to compute sterile effects. We only make a few general comments.

The blue dashed line in fig.s 11 shows what can achieved by a future high-precision short-
baseline reactor experiment able of detecting a 2% deficit in the ν̄e flux [82]. Sterile oscillations
give a ν̄e deficit, which might be energy-dependent if the sterile oscillation length at Eν ∼
few MeV is comparable to the base-line L. Both are unknown; we assumed L ∼ 2 km. Most of
the explorable region at small ∆m2 is already excluded by solar and atmospheric experiments.
The region with large ∆m2 ∼ eV2 is more difficult because even a near detector only sees
averaged oscillations; one has to rely on theoretical predictions for the total flux of reactor
ν̄e [83].
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Sterile neutrinos in SBL exp.s

- Chooz, Bugey (     disappearance)
- CDHS, CCFR (           disappearance)
- Karmen (null               )
- Nomad, Chorus (null                    and                )
-- LSND does not fit

Dataset:

Many reactor/beam experiments looked for
                   disappearance in neutrino fluxes/beams.

Null results. Exclusion regions.⇓
ν̄e/νµ → νs

ν̄e

ν̄µ, νµ

ν̄µ → ν̄e

Method:

νµ,e → ντ νµ → νe

simply vacuum oscillations, with ∆m
2

s ! ∆m
2

atm, sun

P (ν! → ν!′) =

{

1 − 4|V 2

!4
|(1 − |V 2

!4
|) sin2(∆m2

14L/4Eν) for " = "′

4|V 2

!4
||V 2

!′4
| sin2(∆m2

14L/4Eν) for " #= "′



2%       disappearance at SBL

Sterile neutrinos in SBL exp.s
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Figure 11: Sterile mixing: effects in short base-line experiments Chooz, Bugey,
CDHS, CCFR, Karmen, Nomad, Chorus. Shaded regions: excluded at 90, 99% C.L. The
blue dashed lines estimate the region that seems explorable by a future short-baseline reactor
experiment. The plot is symmetric under tan θs ↔ 1/ tan θs so that we only show tan θs ≤ 1.

zenith-angle spectra. We estimate that this remains true in most of the parameter space, and
consequently we do not include in our final results our approximate reanalysis of NC-enriched
data.

As in the solar case, we looked if present data contain some evidence for sterile effects which
correct in a minor way many observables, by searching for local minima of the global χ2. No
statistically significant hint is found: since subleading sterile effects do not improve the global fit
in a significant way (at most by ∆χ2 ≈ 4) our plots only show excluded regions. The excluded
region in fig.s 12d, e (which correspond to νµ/νs and to ντ/νs mixing) extends down to ∆m2

41 = 0
because even in this limit there are sterile oscillations at the atmospheric and solar frequencies.

It is useful to compare the sensitivity of the two classes of experiments, 1) and 2). Since
there are no MSW resonances, all these experiments are sensitive only to relatively large sterile
mixing, θs >∼ 0.1. Sterile mixing with νe (and with the ν1 and ν2 mass eigenstates that contain
a sizable νe fraction) is better probed by reactor experiments, although e-like events at SK
extend the sensitivity down to smaller values of ∆m2. On the contrary atmospheric experiments
give more stringent tests of νs/ντ mixing and of νs/νµ mixing. Within standard cosmology, the
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the direct/easy ways for sterile neutrinos are now closed
look for subdominant effects, refine analysis, include all sources
no significant evidence found, powerful bounds imposed

cosmo, astro,    exps probe different, complementary scenariosν

in particular: 
LSND excluded by std cosmology, 
reallowed if large asymmetry
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Conclusions & Executive Summary
the direct/easy ways for sterile neutrinos are now closed
look for subdominant effects, refine analysis, include all sources
no significant evidence found, powerful bounds imposed

cosmo, astro,    exps probe different, complementary scenariosν

MiniBooNE?
cosmology: measure He and D better,
                  next CMB, LSS will be decisive
low energy solar neutrinos
brace for the next SN: 104 events (but improve theory)

in particular: 
LSND excluded by std cosmology, 
reallowed if large asymmetry

combine data from different fields
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The dataset

In our analysis of flux statistics, we are interested in the
mean flux hFi and the fluctuations about the mean
!F ð"Þ # Fð"Þ=hFi$ 1. We use F(") to denote the transmit-
ted flux, i.e., the ratio of the flux at a given wavelength " to
the unabsorbed quasar continuum flux at ". In order to find
F("), and hence hFi, it is necessary to make an estimate of
the unabsorbed continuum level. The quantity !F(") is much
less sensitive to the exact assumed continuum level, as hFi
has already been divided out. In the present paper we do not
attempt to make accurate determinations of hFi from our
data. Instead, we use hFi results from the literature and
show how our results (for example, for the amplitude of the
matter power spectrum) would change for given future
determinations of hFi.

In order to calculate !F("), we have two choices. The first
is to estimate a continuum level by fitting a line that passes
through apparently unabsorbed regions of the spectrum.
This has already been done in a semiautomated way for the
HIRES data as described in x 2.1 (see also Burles & Tytler
1998). For the LRIS data, which have much lower spectral
resolution, our !F(") results are more likely to be sensitive to
the continuum-fitting technique used. We therefore com-
pare two techniques applied to the LRIS data. The first is
the automated technique described in CWPHK. This
involves fitting a third-order polynomial through the data
points in a given length of spectrum, rejecting points that lie
2 # below the fit line, and iterating until convergence is
reached. We implement this procedure using 100 Å fitting
segments.

The second method for estimating !F(") is to calculate the
mean flux level of the spectrum directly, rather than first fit-
ting the continuum to scale unabsorbed flux to F ¼ 1. The
mean level must be estimated from a region much larger
than the length scales for which we are interested in measur-
ing variations in !F("). This can be done by either fitting a

low-order polynomial to the spectrum itself (Hui et al. 2001)
or smoothing the spectrum with a large radius filter. We do
the latter, using a 50 Å Gaussian filter. The value of !F(") is
then given by Cð"Þ=CSð"Þ $ 1, where C(") is the number of
counts in the spectrum at a wavelength " and CS(") is the
smoothed number of counts.

Figure 2 illustrates these two methods of determining
!F("). Figure 2a shows the LRIS spectrum of the z ¼ 3:16
quasar Q107+1055, along with the fitted continuum (upper
smooth curve) and the 50 Å smoothed spectrum (lower
smooth curve). Figure 2b compares !F(") estimated using the
fitted continuum and using the smoothed spectrum. The
two methods yield nearly indistinguishable results, with
small differences appearing in regions where the spectrum is
apparently close to the unabsorbed continuum. Figure 2c
shows !F(") from the (continuum-fitted) HIRES spectrum
of Q107+1055. Figure 2d blows up the central 150 Å of the
spectrum, superposing the two LRIS !F("), the HIRES
!F("), and the HIRES !F(") smoothed to the spatial resolu-
tion of the LRIS data. The smoothed HIRES spectrum
matches the LRIS spectrum almost perfectly, providing fur-
ther evidence of the robustness of the !F(") determination.
In x 3.3 we compare the HIRES and LRIS flux power spec-
tra for the four quasars common to both samples. We also
show that the two methods of determining !F(") from the
LRIS spectra yield similar power spectrum results. We
adopt the smoothed spectrum method as our standard,
since it does not involve splitting a spectrum into discrete
segments and is simpler to implement in a robust manner.

As in CWPHK, we scale the individual pixel widths in the
spectra to the size they would have at the mean redshift of
the sample in question. In the present work we do this
assuming that the evolution of H(z) follows that in an
Einstein–de Sitter (EdS) universe, which should be a good
approximation at these high redshifts (see also M00). We

Fig. 2.—Determination of !F("), for the quasar Q1017+1055. (a) LRIS spectrum (wiggly line), the continuumfitted over 100 Å regions (upper smooth curve),
and the spectrum smoothed with a 50 Å Gaussian (lower smooth curve). (b) Fluctuations !F(") derived using the continuum-fitted spectrum and the smoothed
spectrum. The continuum-fitted curve is slightly higher where the two are distinguishable. (c) Fluctuations !F(") from the HIRES spectrum of Q1077+1055.
(d ) Zoom of the central 150 Å showing the two variations of the LRIS spectrum, the HIRES spectrum, and the HIRES spectrum smoothed to the resolution
of the LRIS data (gray curve).

No. 1, 2002 TOWARD PRECISE MEASUREMENT OF MATTER CLUSTERING 23

WMAP CMB anisotropy map

LSS redshift survey

Lyman-alpha forest

Boomerang...

SDSS, 2dF

Keck, Hawaii

HST

SNIa lightcurves

some highly 
non trivial 

steps
=

SNIa luminosity distance

CMB power spectrum

matter power spectrum

200 400 600 800 1000 1200 1400

Multipole !
0

1000

2000

3000

4000

5000

6000

!!!!"
1
"!C !TT

!i
n
ΜK

2

10$2 10$1 100

Wavenumber !k! in h! #Mpc
101

102

103

104

105

P
o
w
er
sp
ec
tr
u
m
in
!!Mpc

#!h"3

Baryon 
Acoustic 
Oscillations

200 400 600 800 1000 1200 1400

Multipole !
0

1000

2000

3000

4000

5000

6000

!!!!"
1
"!C !TT

!i
n
ΜK

2

10$2 10$1 100

Wavenumber !k! in h! #Mpc
101

102

103

104

105

P
o
w
er
sp
ec
tr
u
m
in
!!Mpc

#!h"3

(               )

0 200 400 600 800 1000

Multipole !

0

10

20

30

40

!
!(
!
+
1
)!
C
!E
E
!
in
Μ
K
2

10-2 10-1 1

Wavenumber !k! in h! /Mpc

1

10

102

103

104

105

P
o
w
er
sp
ec
tr
u
m
in
!(
M
p
c
/!
h
)3

0 500 1000 1500 2000

Multipole !

0

1000

2000

3000

4000

5000

!
!(
!
+
1
)!
C
!T
T
!
in
Μ
K
2

0 200 400 600 800 1000

Multipole !

-100

-50

0

50

100

!
!(
!
+
1
)!
C
!T
E
!
in
Μ
K
2

Figure 1: Our computation of CMB and LSS spectra in standard ΛCDM cosmology, compared with
data.

3 Analysis strategy

We develop our own computational tools for the analysis of the cosmological observables. For what
concerns standard cosmology, our results agree with those of other authors (e.g. the WMAP Sci-
ence Team), but having independent analyses is clearly important. In this respect, our analysis is
particularly independent: it differs from what nowadays is a typical analysis in the way illustrated
in table 2. Cosmological observables are computed using a code written by one of us, rather than
running the commonly used CMBfast or CAMB public codes [8]: this allows us to have a better
control and flexibility on non-standard modifications.

We use the line-of-sight approach in the conformal Newtonian gauge [8, 9, 10]; recombination
can be implemented both in Peebles approximation (see e.g. [31]) and using the external recfast
code [11], which is the option chosen for the present analysis.

The main disadvantage is that our code is almost 2 orders of magnitude slower than CMBfast
or CAMB. In part this happens because, rather than optimizing our code for standard cosmology,
we keep it fully flexible such that non-standard cosmologies are immediately implemented.3 In
part this happens because, while standard codes are written in FORTRAN, our code is written in
Mathematica [12] and we run it on a common laptop (rather than on a cluster of computers).

We now describe the advantages of our approach that allowed us to perform our analysis. Readers
not interested in these technical details can skip the rest of this section. The main point is that,

3For example, the interacting particles considered in this paper are implemented by typing their linear evolution
equations, eq. (10) or eq. (13), in NDSolve form.
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ence Team), but having independent analyses is clearly important. In this respect, our analysis is
particularly independent: it differs from what nowadays is a typical analysis in the way illustrated
in table 2. Cosmological observables are computed using a code written by one of us, rather than
running the commonly used CMBfast or CAMB public codes [8]: this allows us to have a better
control and flexibility on non-standard modifications.

We use the line-of-sight approach in the conformal Newtonian gauge [8, 9, 10]; recombination
can be implemented both in Peebles approximation (see e.g. [31]) and using the external recfast
code [11], which is the option chosen for the present analysis.

The main disadvantage is that our code is almost 2 orders of magnitude slower than CMBfast
or CAMB. In part this happens because, rather than optimizing our code for standard cosmology,
we keep it fully flexible such that non-standard cosmologies are immediately implemented.3 In
part this happens because, while standard codes are written in FORTRAN, our code is written in
Mathematica [12] and we run it on a common laptop (rather than on a cluster of computers).

We now describe the advantages of our approach that allowed us to perform our analysis. Readers
not interested in these technical details can skip the rest of this section. The main point is that,

3For example, the interacting particles considered in this paper are implemented by typing their linear evolution
equations, eq. (10) or eq. (13), in NDSolve form.
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Figure 3: Fit of cosmological data at 68, 90 and 99% C.L. The shaded areas show our global fit
without Lyman-α, and the dotted lines our WMAP3-only fit, such that this figure can be directly
compared with the analogous WMAP Science Team plots in fig. 10 of [7].

can need one independent chain with ∼ 105 points every time one wants to analyze a (sub)set of
data [7].

The Gaussian approximation has no ‘statistical’ uncertainty due to finite MCMC sampling but it
introduces a ‘systematic’ uncertainty. This is small near the expansion point (chosen to be close to
the best-fit point) and grows when one goes far from it. At some point data become accurate enough
that the region singled out by them is small enough to make the Gaussian approximation a good one.
By construction, the Gaussian approximation reproduces the same best-fit point (small differences
between our and other analyses on common studies are due to different data-sets, different code, etc.)
and the confidence regions with small enough confidence levels, and fails at larger confidence levels.
In practice, we care about 90%, 99% and maybe 99.9% confidence levels. Fig. 3 is our crucial test
and it shows that the contours corresponding to such confidence levels are reproduced in an fairly
accurate way when comparing with the WMAP Science Team analysis. Notice that the Gaussian
approximation needs not to be and is not accurate enough to analyze every single piece of data,
but it allows to correctly fit the full data-set. Some non-standard cosmological parameters are still
subject to ‘degeneracies’: we will later discuss how the Gaussian approximation can be extended to
deal with these situations.

Our code directly gives the χ2 as an analytic quadratic function of cosmological parameters, that
fully describes present information on ΛCDM cosmology. Our result in terms of best fit points and
1σ errors is

fit As h ns τ 100Ωbh2 ΩDMh2

WMAP3 0.80 ± 0.05 0.704 ± 0.033 0.935 ± 0.019 0.081± 0.030 2.24 ± 0.10 0.113± 0.010
Global 0.84 ± 0.04 0.729 ± 0.013 0.951 ± 0.012 0.121± 0.025 2.36 ± 0.07 0.117± 0.003

(3)

a standard deviation.
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For Standard Cosmology we obtain:

(assumes 3.04  massless, freely-streaming neutrinos).

We use our own code in                 to 
- evolve cosmological perturbations, 
- compute spectra and 
- run statistical comparisons with data.
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as opposed to:

We adopt gaussian statistics.

(Recombination is  implemented calling recfast.)
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can need one independent chain with ∼ 105 points every time one wants to analyze a (sub)set of
data [7].

The Gaussian approximation has no ‘statistical’ uncertainty due to finite MCMC sampling but it
introduces a ‘systematic’ uncertainty. This is small near the expansion point (chosen to be close to
the best-fit point) and grows when one goes far from it. At some point data become accurate enough
that the region singled out by them is small enough to make the Gaussian approximation a good one.
By construction, the Gaussian approximation reproduces the same best-fit point (small differences
between our and other analyses on common studies are due to different data-sets, different code, etc.)
and the confidence regions with small enough confidence levels, and fails at larger confidence levels.
In practice, we care about 90%, 99% and maybe 99.9% confidence levels. Fig. 3 is our crucial test
and it shows that the contours corresponding to such confidence levels are reproduced in an fairly
accurate way when comparing with the WMAP Science Team analysis. Notice that the Gaussian
approximation needs not to be and is not accurate enough to analyze every single piece of data,
but it allows to correctly fit the full data-set. Some non-standard cosmological parameters are still
subject to ‘degeneracies’: we will later discuss how the Gaussian approximation can be extended to
deal with these situations.

Our code directly gives the χ2 as an analytic quadratic function of cosmological parameters, that
fully describes present information on ΛCDM cosmology. Our result in terms of best fit points and
1σ errors is
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introduces a ‘systematic’ uncertainty. This is small near the expansion point (chosen to be close to
the best-fit point) and grows when one goes far from it. At some point data become accurate enough
that the region singled out by them is small enough to make the Gaussian approximation a good one.
By construction, the Gaussian approximation reproduces the same best-fit point (small differences
between our and other analyses on common studies are due to different data-sets, different code, etc.)
and the confidence regions with small enough confidence levels, and fails at larger confidence levels.
In practice, we care about 90%, 99% and maybe 99.9% confidence levels. Fig. 3 is our crucial test
and it shows that the contours corresponding to such confidence levels are reproduced in an fairly
accurate way when comparing with the WMAP Science Team analysis. Notice that the Gaussian
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but it allows to correctly fit the full data-set. Some non-standard cosmological parameters are still
subject to ‘degeneracies’: we will later discuss how the Gaussian approximation can be extended to
deal with these situations.

Our code directly gives the χ2 as an analytic quadratic function of cosmological parameters, that
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the best-fit point) and grows when one goes far from it. At some point data become accurate enough
that the region singled out by them is small enough to make the Gaussian approximation a good one.
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In practice, we care about 90%, 99% and maybe 99.9% confidence levels. Fig. 3 is our crucial test
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approximation needs not to be and is not accurate enough to analyze every single piece of data,
but it allows to correctly fit the full data-set. Some non-standard cosmological parameters are still
subject to ‘degeneracies’: we will later discuss how the Gaussian approximation can be extended to
deal with these situations.

Our code directly gives the χ2 as an analytic quadratic function of cosmological parameters, that
fully describes present information on ΛCDM cosmology. Our result in terms of best fit points and
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Figure 2: Difference between our code and CAMB, at the standard-cosmology best-fit point for mν = 0
(red solid line) and for mν = 0.5 eV (blue dashed line). Our code does not employ any approximation
specific for standard cosmology. In both codes various parameters allow the user to increase the
accuracy; this plot holds for the choice employed in the present paper. The dotted line shows the 1σ
accuracy obtained by WMAP3 results (binned data), indicating that we have a good enough accuracy
(as confirmed by other tests). A similar %-level accuracy is found for the TE and EE CMB spectra,
that presently are measured with much larger uncertainties than the TT spectrum.

while FORTRAN can only do numerical computations, Mathematica does not have this limitation and
allows to do analytically all parts of the computations that can be done analytically. This includes
the dependence of cosmological observables, e.g. on the spectral index, and all statistical issues that
nowadays are the most time-consuming aspect of cosmological analyses. Our approach is based on
the powerful old-fashioned Gaussian techniques, as we now briefly describe.

3.1 Statistics

Cosmological data have become so accurate and rich that debates about Bayesian priors versus fre-
quentistic constructions are getting numerically irrelevant: all different techniques converge towards
their common gaussian limit. This is clear e.g. from figures 10 of the WMAP analysis [7]: within
good approximation all allowed regions identified by their Monte Carlo Markov Chain (MCMC) tech-
nique are ellipses (with sizes that have the Gaussian dependence on the confidence level), as they
must be in Gaussian approximation. This means that the usual χ2, a single quadratic function of
the various cosmological parameters, approximatively encodes all present information on standard
cosmology and that the dependence on the N stnd

p parameters of standard cosmology (here chosen
to be the usual As, ns,ΩDM,Ωb, Yp, h, τ with Ωtot = 1, defined as in [7]; As is normalized at the
pivot point k = 0.002/Mpc) is accurately enough described by a first order Taylor expansion of each
observable (the various CTT

" , CTE
" , CEE

" , the power spectra, the luminosity distances of supernovæ,
...) around any point close enough to the best-fit point. We will soon check explicitly that sampling
N stnd

p + 1<∼ 10 points is enough to study standard cosmology.4 For comparison, MCMC techniques

4We do not improve the accuracy by making a second-order Taylor expansion. This can be done by probing
N stnd

p (N stnd
p + 1)/2 <

∼ 50 more points only, but would complicate statistical issues, preventing e.g. analytical marginal-
izations of the likelihood over nuisance parameters.

Furthermore, we checked that using two-sided derivatives or recomputing observables with the public CAMB code [8]
affects the results of the global standard fit, eq. (3), in a minor way: best-fit values typically shift by about a third of
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accuracy obtained by WMAP3 results (binned data), indicating that we have a good enough accuracy
(as confirmed by other tests). A similar %-level accuracy is found for the TE and EE CMB spectra,
that presently are measured with much larger uncertainties than the TT spectrum.

while FORTRAN can only do numerical computations, Mathematica does not have this limitation and
allows to do analytically all parts of the computations that can be done analytically. This includes
the dependence of cosmological observables, e.g. on the spectral index, and all statistical issues that
nowadays are the most time-consuming aspect of cosmological analyses. Our approach is based on
the powerful old-fashioned Gaussian techniques, as we now briefly describe.

3.1 Statistics

Cosmological data have become so accurate and rich that debates about Bayesian priors versus fre-
quentistic constructions are getting numerically irrelevant: all different techniques converge towards
their common gaussian limit. This is clear e.g. from figures 10 of the WMAP analysis [7]: within
good approximation all allowed regions identified by their Monte Carlo Markov Chain (MCMC) tech-
nique are ellipses (with sizes that have the Gaussian dependence on the confidence level), as they
must be in Gaussian approximation. This means that the usual χ2, a single quadratic function of
the various cosmological parameters, approximatively encodes all present information on standard
cosmology and that the dependence on the N stnd

p parameters of standard cosmology (here chosen
to be the usual As, ns,ΩDM,Ωb, Yp, h, τ with Ωtot = 1, defined as in [7]; As is normalized at the
pivot point k = 0.002/Mpc) is accurately enough described by a first order Taylor expansion of each
observable (the various CTT

" , CTE
" , CEE

" , the power spectra, the luminosity distances of supernovæ,
...) around any point close enough to the best-fit point. We will soon check explicitly that sampling
N stnd

p + 1<∼ 10 points is enough to study standard cosmology.4 For comparison, MCMC techniques

4We do not improve the accuracy by making a second-order Taylor expansion. This can be done by probing
N stnd

p (N stnd
p + 1)/2 <

∼ 50 more points only, but would complicate statistical issues, preventing e.g. analytical marginal-
izations of the likelihood over nuisance parameters.

Furthermore, we checked that using two-sided derivatives or recomputing observables with the public CAMB code [8]
affects the results of the global standard fit, eq. (3), in a minor way: best-fit values typically shift by about a third of
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supernova data.

In §4.2 and subsequent sections, we consider two recently published high-z supernovae datasets

in combination with the WMAP CMB data, 157 supernova in the “Gold Sample” as described in

Riess et al. (2004) with 0.015 < z < 1.6 based on a combination of ground-based data and the

GOODS ACS Treasury program using the Hubble Space Telescope (HST) and the second sample,

115 supernova in the range 0.015 < z < 1 from the Supernova Legacy Survey (SNLS) (Astier et al.

2005) .

Measurements of the apparent magnitude, m, and inferred absolute magnitude, M0, of each

SN has been used to derive the distance modulus µobs = m−M0, from which a luminosity distance

is inferred, µobs = 5 log[dL(z)/Mpc] + 25. The luminosity distance predicted from theory, µth, is

compared to observations using a χ2 analysis summing over the SN sample.

χ2 =
∑

i

(µobs,i(zi) − µth(zi,M0))2

σ2
obs,i

(8)

where the absolute magnitude, M0, is a “nuisance parameter”, analytically marginalized over in

the likelihood analysis (Lewis & Bridle 2002), and σobs contains systematic errors related to the

light curve stretch factor, K-correction, extinction and the intrinsic redshift dispersion due to SNe

peculiar velocities (assumed 400 and 300 km s−1 for HST/GOODS and SNLS data sets respectively).

4.2. Joint Constraints on ΛCDM Model Parameters

Table 5: ΛCDM Model: Joint Likelihoods
WMAP WMAP WMAP+ACBAR WMAP +

Only +CBI+VSA +BOOMERanG 2dFGRS

Parameter

100Ωbh2 2.233+0.072
−0.091 2.203+0.072

−0.090 2.228+0.066
−0.082 2.223+0.066

−0.083

Ωmh2 0.1268+0.0073
−0.0128 0.1238+0.0066

−0.0118 0.1271+0.0070
−0.0128 0.1262+0.0050

−0.0103

h 0.734+0.028
−0.038 0.738+0.028

−0.037 0.733+0.030
−0.038 0.732+0.018

−0.025

A 0.801+0.043
−0.054 0.798+0.047

−0.057 0.801+0.048
−0.056 0.799+0.042

−0.051

τ 0.088+0.028
−0.034 0.084+0.031

−0.038 0.084+0.027
−0.034 0.083+0.027

−0.031

ns 0.951+0.015
−0.019 0.945+0.015

−0.019 0.949+0.015
−0.019 0.948+0.014

−0.018

σ8 0.744+0.050
−0.060 0.722+0.044

−0.056 0.742+0.045
−0.057 0.737+0.033

−0.045

Ωm 0.238+0.027
−0.045 0.229+0.026

−0.042 0.239+0.025
−0.046 0.236+0.016

−0.029

In the previous section, we showed that extrapolations of the power-law ΛCDM fits to the

WMAP measurements to other astronomical data successfully passes a fairly stringent series of

cosmological tests. Motivated by this agreement, we combine the WMAP observations with other

CMB data sets and with other astronomical observations.
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Table 6: ΛCDM Model
WMAP+ WMAP+ WMAP+ WMAP + WMAP+

SDSS LRG SNLS SN Gold CFHTLS

Parameter

100Ωbh2 2.233+0.062
−0.086 2.242+0.062

−0.084 2.233+0.069
−0.088 2.227+0.065

−0.082 2.247+0.064
−0.082

Ωmh2 0.1329+0.0057
−0.0109 0.1337+0.0047

−0.0098 0.1295+0.0055
−0.0106 0.1349+0.0054

−0.0106 0.1410+0.0042
−0.0094

h 0.709+0.024
−0.032 0.709+0.016

−0.023 0.723+0.021
−0.030 0.701+0.020

−0.026 0.686+0.017
−0.024

A 0.813+0.042
−0.052 0.816+0.042

−0.049 0.808+0.044
−0.051 0.827+0.045

−0.053 0.852+0.036
−0.047

τ 0.079+0.029
−0.032 0.082+0.028

−0.033 0.085+0.028
−0.032 0.079+0.028

−0.034 0.088+0.021
−0.031

ns 0.948+0.015
−0.018 0.951+0.014

−0.018 0.950+0.015
−0.019 0.946+0.015

−0.019 0.950+0.015
−0.019

σ8 0.772+0.036
−0.048 0.781+0.032

−0.045 0.758+0.038
−0.052 0.784+0.035

−0.049 0.826+0.023
−0.035

Ωm 0.266+0.025
−0.040 0.267+0.017

−0.029 0.249+0.023
−0.034 0.276+0.022

−0.036 0.301+0.018
−0.031

Table 5 and 6 show that adding external data sets has little effect on several parameters: Ωbh2,

ns and τ . However, the various combinations do reduce the uncertainties on Ωm and the amplitude

of fluctuations. The data sets used in Table 5 favor smaller values of the matter density, higher

Hubble constant values, and lower values of σ8. The data sets used in Table 6 favor higher values

of Ωm, lower Hubble constants and higher values of σ8. The lensing data set is most discrepant and

it most strongly pulls the combined results towards higher amplitudes and higher Ωm (see Figure

7 and 9). The overall effect of combining the data sets is shown in Figure 10.

The best fits for the data combinations shown Table 6 differ by about 1σ from the best fits

for the data combinations shown in Table 5 for their predictions for the total matter density, Ωmh2

(See Tables 5 and 6 and Figure 9). More accurate measurements of the third peak will help resolve

these discrepancies.

The differences between the two sets of data may be due to statistical fluctuations. For example,

the SDSS main galaxy sample power spectrum differs from the power spectrum measured from the

2dfGRS: this leads to a lower value for the Hubble constant for WMAP+SDSS data combination,

h = 0.709+0.024
−0.032, than for WMAP+2dFGRS, h = 0.732+0.018

−0.025. Note that while the SDSS LRG

data parameters values are close to those from the main SDSS catalog, they are independent

determinations with mostly different systematics.

The lensing measurements are sensitive to amplitude of the local potential fluctuations, which

scale roughly as σ8Ω0.6
m , so that lensing parameter constraints are nearly orthogonal to the CMB

degeneracies (Tereno et al. 2005). The CFHTLS lensing data best fit value for σ8Ω0.6
m is 1 − 2σ

higher than the best fit three year WMAP value. As a result, the combination of CFHT and

WMAP data favors a higher value of σ8 and Ωm and a lower value of H0 than WMAP data alone.

Appendix A shows that the amplitude of this discrepancy is somewhat sensitive to our choice of

priors. Because of the small error bars in the CFHT data set and the relatively small overlap region

– 28 –

Table 6: ΛCDM Model
WMAP+ WMAP+ WMAP+ WMAP + WMAP+

SDSS LRG SNLS SN Gold CFHTLS

Parameter

100Ωbh2 2.233+0.062
−0.086 2.242+0.062

−0.084 2.233+0.069
−0.088 2.227+0.065

−0.082 2.247+0.064
−0.082

Ωmh2 0.1329+0.0057
−0.0109 0.1337+0.0047

−0.0098 0.1295+0.0055
−0.0106 0.1349+0.0054

−0.0106 0.1410+0.0042
−0.0094

h 0.709+0.024
−0.032 0.709+0.016

−0.023 0.723+0.021
−0.030 0.701+0.020

−0.026 0.686+0.017
−0.024

A 0.813+0.042
−0.052 0.816+0.042

−0.049 0.808+0.044
−0.051 0.827+0.045

−0.053 0.852+0.036
−0.047

τ 0.079+0.029
−0.032 0.082+0.028

−0.033 0.085+0.028
−0.032 0.079+0.028

−0.034 0.088+0.021
−0.031

ns 0.948+0.015
−0.018 0.951+0.014

−0.018 0.950+0.015
−0.019 0.946+0.015

−0.019 0.950+0.015
−0.019

σ8 0.772+0.036
−0.048 0.781+0.032

−0.045 0.758+0.038
−0.052 0.784+0.035

−0.049 0.826+0.023
−0.035

Ωm 0.266+0.025
−0.040 0.267+0.017

−0.029 0.249+0.023
−0.034 0.276+0.022

−0.036 0.301+0.018
−0.031

Table 5 and 6 show that adding external data sets has little effect on several parameters: Ωbh2,

ns and τ . However, the various combinations do reduce the uncertainties on Ωm and the amplitude

of fluctuations. The data sets used in Table 5 favor smaller values of the matter density, higher

Hubble constant values, and lower values of σ8. The data sets used in Table 6 favor higher values

of Ωm, lower Hubble constants and higher values of σ8. The lensing data set is most discrepant and

it most strongly pulls the combined results towards higher amplitudes and higher Ωm (see Figure

7 and 9). The overall effect of combining the data sets is shown in Figure 10.

The best fits for the data combinations shown Table 6 differ by about 1σ from the best fits

for the data combinations shown in Table 5 for their predictions for the total matter density, Ωmh2

(See Tables 5 and 6 and Figure 9). More accurate measurements of the third peak will help resolve

these discrepancies.

The differences between the two sets of data may be due to statistical fluctuations. For example,

the SDSS main galaxy sample power spectrum differs from the power spectrum measured from the

2dfGRS: this leads to a lower value for the Hubble constant for WMAP+SDSS data combination,
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scale roughly as σ8Ω0.6
m , so that lensing parameter constraints are nearly orthogonal to the CMB

degeneracies (Tereno et al. 2005). The CFHTLS lensing data best fit value for σ8Ω0.6
m is 1 − 2σ

higher than the best fit three year WMAP value. As a result, the combination of CFHT and

WMAP data favors a higher value of σ8 and Ωm and a lower value of H0 than WMAP data alone.
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Figure 5: Fig. 5a): fit as function of the energy density in freely-streaming relativistic particles,
parametrized by the usual ‘number of neutrinos’ Nν . Fig. 5b): fit as function of the energy density
in extra interacting relativistic particles, with abundance parametrized by ∆Nν . We studied different
combinations of data-sets, as indicated by the legend.

determined by non-CMB data, and giving slightly different weight to them can significantly affect the
fit because different pieces of data prefer different values of Nν . In particular, the 2σ preference for
Nν > 3 is mainly due to the 2σ anomaly in the Lyman-α measurement of the power spectrum: fig. 5a
shows that omitting Lyman-α one recovers excellent agreement with the standard value Nν = 3. The
agreement with and between the up-to-date analyses performed by the WMAP Team [7] and by [18]
is imperfect; in particular the revised version of [18] claims a 3σ preference for Nν > 3.

4.3 Extra massless particles interacting among themselves

In the previous section we considered extra (massless) particles with negligible interactions, that
therefore freely move on cosmological scales. We now consider the opposite limit: extra (massless)
particles that interact among themselves with a mean free path smaller than relevant cosmological
scales, such that inhomogeneities in their energy density evolve in a different way. Concrete examples
are an elementary scalar with a quartic self-interaction or any particle with low compositeness scale,
obtained e.g. if some extra QCD-like gauge group becomes strongly coupled at an energy much lower
than the QCD scale. In the tight coupling limit this system is described by a fluid: its density and
velocity perturbations δ and v obey the standard fluid equations (in the conformal Newtonian gauge
and in linear approximation):

δ̇ = −4Φ̇− 4
3
kv, v̇ = kΨ +

kδ

4
(10)

where a dot denotes derivative with respect to conformal time, k is the wavenumber, Φ and Ψ are
the scalar perturbations in the metric (in the notations of [31]).

Fig. 5b shows the constraint on the density of the extra particles, that we parameterize in terms
of the usual ‘equivalent number of neutrinos’ ∆Nν ≥ 0: the global fit gives

∆Nν = 0± 1.3. (11)

11

Cosmology probes           .
∑

mνi

∑
mνi

< 0.40 eV

Global fit:

∑
mνi

< 2.2 eV

(99.9% C.L.)

(95% C.L.)

CMB only:

dropping Ly-alpha:

(99.9% C.L.)
∑

mνi
< 0.73 eV

(3 massive neutrinos)

Cosmology gives dominant bound on            ;
the bound tightens combining relatively less safe datasets.

∑
mνi

Bottom Line:
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LEPTONSLEPTONSLEPTONSLEPTONS NODE=LXXX005

Neutrino Properties
NODE=S066

SUM OF THE NEUTRINO MASSES, mtotSUM OF THE NEUTRINO MASSES, mtotSUM OF THE NEUTRINO MASSES, mtotSUM OF THE NEUTRINO MASSES, mtot NODE=S066MNS

(Defined in the above note), of effectively stable neutrinos (i.e., those NODE=S066MNS
with mean lives greater than or equal to the age of the universe). These
papers assumed Dirac neutrinos. When necessary, we have generalized
the results reported so they apply to mtot. For other limits, see SZA-
LAY 76, VYSOTSKY 77, BERNSTEIN 81, FREESE 84, SCHRAMM 84,
and COWSIK 85.

NODE=S066MNSVALUE (eV) CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, fits, limits, etc. • • •

YOUR DATA < 0.24 95 54 CIRELLI 06 COSM
< 0.62 95 55 HANNESTAD 06 COSM
< 0.52 95 56 KRISTIANSEN 06 COSM
< 0.17 95 54 SELJAK 06 COSM
< 2.0 95 57 ICHIKAWA 05 COSM
< 0.75 58 BARGER 04 COSM
< 1.0 59 CROTTY 04 COSM
< 0.7 60 SPERGEL 03 COSM WMAP
< 0.9 61 LEWIS 02 COSM
< 4.2 62 WANG 02 COSM CMB
< 2.7 63 FUKUGITA 00 COSM
< 5.5 64 CROFT 99 ASTR Ly α power spec
<180 SZALAY 74 COSM
<132 COWSIK 72 COSM
<280 MARX 72 COSM
<400 GERSHTEIN 66 COSM

54Constrains the total mass of neutrinos from recent CMB, large scale structure, and SN1a NODE=S066MNS;LINKAGE=CI
data.

55Constrains the total mass of neutrinos from recent CMB and large scale structure data. NODE=S066MNS;LINKAGE=HA
56Constrains the total mass of neutrinos from recent CMB, large scale structure, SN1a, NODE=S066MNS;LINKAGE=KR

HST, BBN, and baryon acoustic oscillation data. The limit relaxes to 1.66 when WMAP
data alone is used.

57Constrains the total mass of neutrinos from the CMB experiments alone, assuming ΛCDM NODE=S066MNS;LINKAGE=IC
Universe. FUKUGITA 06 show that this result is unchanged by the 3-year WMAP data.

58Constrains the total mass of neutrinos from the power spectrum of fluctuations derived NODE=S066MNS;LINKAGE=BA
from the Sloan Digital Sky Survey and the 2dF galaxy redshift survey, WMAP and 27
other CMB experiments and measurements by the HST Key project.

59Constrains the total mass of neutrinos from the power spectrum of fluctuations derived NODE=S066MNS;LINKAGE=CR
from the Sloan Digital Sky Survey, the 2dF galaxy redshift survey, WMAP and ACBAR.
The limit is strengthened to 0.6 eV when measurements by the HST Key project and
supernovae data are included.

60Constrains the fractional contribution of neutrinos to the total matter density in the NODE=S066MNS;LINKAGE=PG
Universe from WMAP data combined with other CMB measurements, the 2dfGRS data,
and Lyman α data. The limit does not noticeably change if the Lyman α data are not
used.

61 LEWIS 02 constrains the total mass of neutrinos from the power spectrum of fluctuations NODE=S066MNS;LINKAGE=LW
derived from the CMB, HST Key project, 2dF galaxy redshift survey, supernovae type Ia,
and BBN.

62WANG 02 constrains the total mass of neutrinos from the power spectrum of fluctuations NODE=S066MNS;LINKAGE=WG
derived from the CMB and other cosmological data sets such as galaxy clustering and
the Lyman α forest.

63 FUKUGITA 00 is a limit on neutrino masses from structure formation. The constraint is NODE=S066MNS;LINKAGE=FK
based on the clustering scale σ8 and the COBE normalization and leads to a conservative
limit of 0.9 eV assuming 3 nearly degenerate neutrinos. The quoted limit is on the sum
of the light neutrino masses.

64CROFT 99 result based on the power spectrum of the Ly α forest. If Ωmatter < 0.5, NODE=S066MNS;LINKAGE=CF
the limit is improved to m

ν
< 2.4 (Ωmatter/0.17–1) eV.
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Figure 5: Fig. 5a): fit as function of the energy density in freely-streaming relativistic particles,
parametrized by the usual ‘number of neutrinos’ Nν . Fig. 5b): fit as function of the energy density
in extra interacting relativistic particles, with abundance parametrized by ∆Nν . We studied different
combinations of data-sets, as indicated by the legend.

determined by non-CMB data, and giving slightly different weight to them can significantly affect the
fit because different pieces of data prefer different values of Nν . In particular, the 2σ preference for
Nν > 3 is mainly due to the 2σ anomaly in the Lyman-α measurement of the power spectrum: fig. 5a
shows that omitting Lyman-α one recovers excellent agreement with the standard value Nν = 3. The
agreement with and between the up-to-date analyses performed by the WMAP Team [7] and by [18]
is imperfect; in particular the revised version of [18] claims a 3σ preference for Nν > 3.

4.3 Extra massless particles interacting among themselves

In the previous section we considered extra (massless) particles with negligible interactions, that
therefore freely move on cosmological scales. We now consider the opposite limit: extra (massless)
particles that interact among themselves with a mean free path smaller than relevant cosmological
scales, such that inhomogeneities in their energy density evolve in a different way. Concrete examples
are an elementary scalar with a quartic self-interaction or any particle with low compositeness scale,
obtained e.g. if some extra QCD-like gauge group becomes strongly coupled at an energy much lower
than the QCD scale. In the tight coupling limit this system is described by a fluid: its density and
velocity perturbations δ and v obey the standard fluid equations (in the conformal Newtonian gauge
and in linear approximation):

δ̇ = −4Φ̇− 4
3
kv, v̇ = kΨ +

kδ

4
(10)

where a dot denotes derivative with respect to conformal time, k is the wavenumber, Φ and Ψ are
the scalar perturbations in the metric (in the notations of [31]).

Fig. 5b shows the constraint on the density of the extra particles, that we parameterize in terms
of the usual ‘equivalent number of neutrinos’ ∆Nν ≥ 0: the global fit gives

∆Nν = 0± 1.3. (11)
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Number of Neutrino Types
NODE=S007

The neutrinos referred to in this section are those of the Standard NODE=S007

SU(2)×U(1) Electroweak Model possibly extended to allow nonzero
neutrino masses. Light neutrinos are those with m < mZ /2. The
limits are on the number of neutrino mass eigenstates, including ν1,
ν2, and ν3.

Limits from Astrophysics and CosmologyLimits from Astrophysics and CosmologyLimits from Astrophysics and CosmologyLimits from Astrophysics and Cosmology NODE=S007215

Number of Light ν TypesNumber of Light ν TypesNumber of Light ν TypesNumber of Light ν Types NODE=S007N
(“light” means < about 1 MeV). See also OLIVE 81. For a review of limits based NODE=S007N
on Nucleosynthesis, Supernovae, and also on terrestial experiments, see DENEGRI 90.
Also see “Big-Bang Nucleosynthesis” in this Review.

NODE=S007NVALUE CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, fits, limits, etc. • • •

YOUR DATA 3 < N
ν

< 7 95 3 CIRELLI 06 COSM
2.7 < N

ν
< 4.6 95 4 HANNESTAD 06 COSM

3.6 < N
ν

< 7.4 95 3 SELJAK 06 COSM
< 4.4 5 CYBURT 05 COSM
< 3.3 6 BARGER 03C COSM
1.4 <N

ν
< 6.8 7 CROTTY 03 COSM

1.9 <N
ν

< 6.6 7 PIERPAOLI 03 COSM
2 < N

ν
< 4 LISI 99 BBN

< 4.3 OLIVE 99 BBN
< 4.9 COPI 97 Cosmology
< 3.6 HATA 97B High D/H quasar abs.

< 4.0 OLIVE 97 BBN; high 4He and 7Li
< 4.7 CARDALL 96B COSM High D/H quasar abs.

< 3.9 FIELDS 96 COSM BBN; high 4He and 7Li
< 4.5 KERNAN 96 COSM High D/H quasar abs.
< 3.6 OLIVE 95 BBN; ≥ 3 massless ν

< 3.3 WALKER 91 Cosmology
< 3.4 OLIVE 90 Cosmology
< 4 YANG 84 Cosmology
< 4 YANG 79 Cosmology
< 7 STEIGMAN 77 Cosmology

PEEBLES 71 Cosmology
<16 8 SHVARTSMAN69 Cosmology

HOYLE 64 Cosmology

3Constrains the number of neutrino types from recent CMB, large scale structure, and NODE=S007N;LINKAGE=CI
SN1a data.

4Constrains the number of neutrino types from recent CMB and large scale structure data. NODE=S007N;LINKAGE=HN
5Limit on the number of neutrino types based on 4He and D/H abundance assuming a NODE=S007N;LINKAGE=CB
baryon density fixed to the WMAP data. Limit relaxes to 4.6 if D/H is not used or to
5.8 if only D/H and the CMB are used. See also CYBURT 01 and CYBURT 03.
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 Non-standard modifications
A. a large primordial lepton asymmetry

Lν =

nν − nν̄

nγ

Foot, Volkas PRL 75 (1995)
P.Di Bari (2002, 2003)
V.Barger et al., PLB 569 (2003)
...

Dolgov,..., Semikoz (2002) 
Abazajian, Beacom, Bell (2002)
Cuoco,..., Serpico (2004) 
Serpico, Raffelt (2005)

An asymmetry                           (baryon asym.) would be natural,
but a priori                        is possible.

Lν ≈ η = 6 10−10

Lν ∼ O(10−2)

C. low reheating temperature
D. ...

B. neutrino interactions with new light particles



BBN

n/p
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D/H

(nuclear rates, n lifetime,
weak cross sections)
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from
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∆m2

s , θs

ρνe
↔ ρνµ

↔ ρντ
↔ ρνs

For any choice of                     a prediction from  BBN.∆m2

s , θs

BBN with lepton asymmetry

, Lν

Lν



3. scatterings and 
absorptions

ν thermal masses

2. oscillations

1.expansion

Ṫ ∼ −H(T, ρ)T

Hm =
1

2Eν

[

V diag(m2
1, m

2
2, m

2
3, m

2
4)V

† + Eνdiag(Ve, Vµ, Vτ , 0)
]

BBN with lepton asymmetry
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Vs = 0

- an extra term in the neutrino matter potentials
- follow separately      and        ρ ρ̄



- (also: n/p weak rates affected by                )

- for                 , matter effects suppress mixing

- despite      decreasing, the asymmetry term inhibits
                      oscillations

 -     are less efficiently produced (or not at all)

What happens qualitatively:

T ! MeV

T

νactive ↔ νs

(ρνs
! 0)

BBN with lepton asymmetry

    Assumptions:
•                                      for simplicity
•  non-dynamical  
•  neglect spectral distortions

Lνe
= Lνµ

= Lντ

νs

ρνe
!= ρ̄νe

(ρνs
! 1)

Lν

2 4 6 8 10
T !MeV"

0
0.2
0.4
0.6
0.8
1

Ρ

ρs

ρe

ρµ,ρτ

[comparison with 
standard case]

νe/νs mixing

Lν = 10−6

tan2 2θs = 2 10−1

∆m
2
s = 6 10−4 eV

2

Fuller et al., 2004-2006



LSS with lepton asymmetry

(@ 99.9% C.L., 
global fit)
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with lepton asymmetry
Portions of the parameter space are reopened:
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LSND with lepton asymmetry

Chu, Cirelli 2006
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postulating a primordial 
asymmetry                       .                 

reconciles LSND and cosmology

Portions of the parameter space are reopened:
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 Non-standard modifications
A. a large primordial lepton asymmetry

C. low reheating temperature
D. ...

B. neutrino interactions with new light particles

[skip to conclusions]



 Non-standard modifications
A. a large primordial lepton asymmetry

B. neutrino interactions with new light particles

C. low reheating temperature
D. ...

couplings            mediate neutrino decay at late times: 
      neutrinos disappear      not subject to cosmo bounds

“Neutrinoless Universe”, Beacom, Bell, Dodelson (2004)

“LSND”, Palomares-Ruiz, Pascoli, Schwetz (2005)

“MaVaNs”, Fardon, Nelson, Weiner (2004)
“Late-time masses”, Chacko, Hall et al., (2004)

⇓
g νν̄φ

g νsν̄φalso for sterile neutrinos
in general, interacting neutrinos pop up often



couplings imply a tightly coupled fluid at recombination
for                          (decay, scattering)

Cosmology with sticky neutrinos
ν ↔ φ

g > 10−8, 10−14 Hannestad, Raffelt (2005)
⇓ neutrino free streaming is obstructed



couplings imply a tightly coupled fluid at recombination
for                          (decay, scattering)

Cosmology with sticky neutrinos

cosmological
perturbations

evolution
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Cosmology with sticky neutrinos
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Case: three massive neutrinos,
         interacting with a massless scalar.

Cosmology with sticky neutrinos

mν

Cosmology disfavors, at various degrees,
interacting (non-freely streaming) neutrinos.

Bottom Line:
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Figure 8: Number of standard deviations, defined as (χ2 − χ2
0)

1/2 (where χ2
0 is the best ΛCDM fit

with massless neutrinos) at which cosmological data disfavor a fluid of 3 neutrinos interacting with
a scalar assuming massive neutrinos and massless scalar (fig. 8a) or massless neutrinos and massive
scalar (fig. 8b). The different lines correspond to different data-sets: global fit (continuous black line),
Lyman-α data dropped (dot-dashed green line), WMAP3 only (dashed red line).

freely streams. In standard cosmology R = 0 and Nν = Nnormal
ν = 3.04. Fig. 7 shows how a global

fit of present data determines these two parameters. The ‘all interacting’ case (R = 1) is disfavored
at 4σ at least (i.e. minχ2(Nν , R = 1) − χ2(Nν = 3, R = 0)>∼ 16) and at 3σ if Lyman-α data are
dropped. As in the case of massive neutrinos, Lyman-α data make the constraint slightly stronger
than the sensitivity. Two previous analyses claimed different results: our constraints are somewhat
stronger than in [37] (possibly because we use the most recent data set) and weaker than in [36].

4.7 Massive neutrinos interacting with a massless boson

We now explore how the situation changes if neutrinos have a non vanishing mass mν . We focus
on the most interesting limiting case: R = 0 i.e. we now assume that all neutrinos are involved
in the interaction. This is interesting because it means that the cosmological bound on neutrino
masses no longer applies, because when T <∼mν all neutrinos annihilate or decay into massless φ
particles. Scenarios of this kind have been proposed for a number of reasons [38, 39, 40]. We again
assume that neutrinos initially have the standard abundance, and that bosons initially have the
minimal abundance, Nφ = 1 (one real scalar). After that all neutrinos annihilate into φ, they acquire
a relativistic energy density corresponding to an equivalent number of neutrinos Nν(T <∼mν) =
4/7(25/4)4/3 ∼ 6.6.

Fig. 8a shows how much this non-standard cosmology is disfavored as a function of mν (standard
cosmology is not recovered for any value of mν). For mν # eV the result is similar to the case
mν = 0, already discussed in section 4.6: this scenario is disfavored at about 4σ by the global fit. As
already noticed in [37], the scenario becomes less disfavored for mν >∼ eV (beta decay data demand
mν <∼ 2 eV [1]). We find that WMAP3 data (dashed lines in fig.s 8) are more constraining than the
WMAP1 data analyzed in [37].

We do not consider intermediate scenarios where only one or two massive neutrinos interact with
the scalar: both the constraint on neutrino masses and on their free-streaming applies, but in a
milder form [37].
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Cosmological Perturbations

Π = Θ2 + ΘP2 + ΘP0

Θ̇ + ikµΘ = −Φ̇ − ikµΨ − τ̇
[

Θ0 − Θ + µvb − 1/2P2(µ)Π
]

Θ̇P + ikµΘP = −τ̇
[

ΘP + 1/2
(

1 − P2(µ)
)

Π
]

v̇b +
ȧ

a
vb = −ikΨ +

τ̇

R

[

vb + 3iΘ1

]

δ̇b + ikvb = −3Φ̇

δ̇dm + ikvdm = −3Φ̇

v̇dm +
ȧ

a
vdm = −ikΨ

R = 3ρ0
b/4ρ0

γ

}
}

}

}
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τ̇ = dτ/dη = −neσT a

}
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dk[. . .]Θ!(k)
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} extra
v̇x = −ikΨ + ȧ
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(1 − 3w) ivx −

w

1+w
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δ̇x = −(1 + w)(3Φ̇ + ikvx)

Massive particles, 
interacting among themselves
and with neutrinos 
(i.e.non freely streaming).

Contribute to the Rel/NR 
energy densities.

A fluid defined by              ,
w = 1/3

w = 0

δx, vx

when NR.
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Solar neutrino spectrum

[back]
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Sterile neutrinos in atmo+LBL

[back to atmo]

Basics: evidence for oscillations is disappearance of     from belowνµ



no      appearance

Sterile neutrinos in atmo+LBL
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νµ → ντ νµ → νs

no matter effects
(             )

matter effects 
(                    )Vµ = Vτ Vµ != Vs = 0

FIG. 30. Allowed regions (at 90, 95 and 99 % CL) from the analysis of the full data sample of
atmospheric neutrinos for the oscillation channels νµ → ντ and νµ → νs. The best fit points are

marked with a star (see text for details). Also shown are the expected sensitivities from LBL
experiments.
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the predictions in the case of no-oscillation and for the best fit points of νµ → ντ (∆m2 = 2.6×10−3

eV2, sin2 2θ = 0.97) and νµ → νs (∆m2 = 3 × 10−3 eV2, sin2 θ = 0.61) oscillations.
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