Annecy Neutrino GDR, 13 March 2007

Sterile Neutrinos (in all sauces)

Marco Cirelli (SPhT-CEA/Saclay & INFN)

with: A.Strumia (Pisa) Y.-Z. Chu (Yale) G.Marandella (UC Davis) F.Vissani (Gran Sasso)

based on:

NPB 708 (2005) 215, hep-ph/0403158 JCAP 12 (2006) 013, hep-ph/0607086 PRD 74 (2006) 085015, astro-ph/0608206

Why sterile neutrinos

We want to study light sterile neutrinos ν_s .

 $\mathcal{O}(eV)$ (why light?)

- spin 1/2 fermions,

- neutral under SM forces,

- mix with active neutrinos.

Why sterile neutrinos ν_s . We want to study light sterile neutrinos ν_s . $\mathcal{O}(eV)$ (why light?) - spin 1/2 fermions, - neutral under SM forces, - mix with active neutrinos.

Because: - subdominant solar/atmo effects

Why sterile neutrinos ν_s . We want to study light sterile neutrinos ν_s . $\mathcal{O}(eV)$ (why light?) - spin 1/2 fermions, - neutral under SM forces, - mix with active neutrinos.

Because: - subdominant solar/atmo effects

- LSND/MiniBooNE

Why sterile neutrinos We want to study light sterile neutrinos ν_s . $\mathcal{O}(eV)$ (why light?) - spin 1/2 fermions, - neutral under SM forces, - mix with active neutrinos.

Because: - subdominant solar/atmo effects

- LSND/MiniBooNE

- invoked in phenomenology

r-process nucleosynthesis pulsar kicks galactic ionization solar neutrino modulation...

We want to study light sterile neutrinos ν_s . $\mathcal{O}(eV)$ (why light?) $\qquad - \operatorname{spin} 1/2 \text{ fermions,}$ $- \operatorname{neutral under SM forces,}$ $- \operatorname{mix with active neutrinos.}$

Because: - subdominant solar/atmo effects

- LSND/MiniBooNE

- invoked in phenomenology

- predicted in beyond SM models

r-process nucleosynthesis pulsar kicks galactic ionization solar neutrino modulation... right-handed neutrino goldstino axino majorino dilatino branino familino modulino

The discovery of a new light particle would be fundamental.

3+1= 4 neutrino mixing

Instead of a limited 2ν formalism $\nu_l \rightarrow \cos \theta_s \nu_{l'} + \sin \theta_s \nu_s$ we want a full 4ν formalism, including active-active oscillations. A simple parametrization: unit vector \vec{n} identifies a combination of ν_{active} $\vec{n} \cdot \vec{\nu} = n_e \nu_e + n_\mu \nu_\mu + n_\tau \nu_\tau = n_1 \nu_1 + n_2 \nu_2 + n_3 \nu_3$

which mixes with $\nu_{\rm s}$ with an angle $\theta_{\rm s}$, $\nu_{\rm s}$ has a mass m_4 .

Basic cases: mixing with a flavor eigenstate, or a mass eigenstate

Free parameters: given a case, m_4 and $\theta_{
m s}$.

3+1= 4 neutrino mixing

Instead of a limited 2ν formalism $\nu_l \rightarrow \cos \theta_s \nu_{l'} + \sin \theta_s \nu_s$ we want a full 4ν formalism, including active-active oscillations. A simple parametrization: unit vector \vec{n} identifies a combination of ν_{active} $\vec{n} \cdot \vec{\nu} = n_e \nu_e + n_\mu \nu_\mu + n_\tau \nu_\tau = n_1 \nu_1 + n_2 \nu_2 + n_3 \nu_3$

which mixes with $\nu_{\rm s}$ with an angle $\theta_{\rm s}$, $\nu_{\rm s}$ has a mass m_4 .

Basic cases: mixing with a flavor eigenstate, or a mass eigenstate

Free parameters: given a case, m_4 and $\theta_{
m s}$.

Active parameters: $\Delta m_{sun}^2, \Delta m_{atm}^2, \theta_{12}, \theta_{23}, \theta_{13} \equiv 0$, norm hierarchy.

Sterile neutrinos in cosmology

Neutrinos are important in the Early Universe because they are:

- a lot (as abundant as photons)
- the main component of the (relativistic) energy density that sets the expansion scale
- shaping the growth of galaxies via their free-streaming

An extra $\nu_{\rm s}$ can make a big difference.

Sterile neutrinos in cosmology

Neutrinos are important in the Early Universe because they are:

- a lot (as abundant as photons)
- the main component of the (relativistic) energy density that sets the expansion scale
- shaping the growth of galaxies via their free-streaming

An extra $\nu_{\rm s}$ can make a big difference.

Bounds come: from BBN

- T $\,\sim\,$ MeV
- flavor is important
- matter effects in the plasma

Bounds come: from later cosmology (CMB, LSS)

- T \lesssim eV - $m_{
u}$ is important

For any choice of $\Delta m_{\rm s}^2$, $\theta_{\rm s}$ a prediction from BBN.

For every choice of Δm_s^2 , θ_s , for $T \gg MeV \longrightarrow 0.07 MeV$ follow:

(BBN ends, les jeux sont faits)

- 1 kinetic equations for neutrino densities $\rho_{\nu_e}, \rho_{\nu_\mu}, \rho_{\nu_\tau}, \rho_{\nu_s}$
- 2 equation for *n/p*
- 3 equations of light nuclei (⁴He, D) production

Assumptions:

- no large lepton asymmetries
- neglect spectral distortions Fuller et al., 2004-2006

Big Bang Nucleosynthesis
I. Neutrino kinetic equations
(ax4 neutrino density matrix
$$\rho$$

$$\frac{d\rho}{dt} = \frac{dT}{dt} \frac{d\rho}{dT} = -i \left[\mathcal{H}_m, \rho\right] - \left\{\Gamma, (\rho - \rho^{eq})\right\}$$

$$\frac{diag(1,1,1,0)}{diag(1,1,1,0)}$$
I.expansion

$$\frac{d\rho}{\mu_e} + \rho_{\nu\mu} + \rho_{\nu\tau} + \rho_{\nu_e}$$

$$H = (8\pi/3 G_N \rho_{tot})^{1/2}$$
J.expansion

$$\frac{d\rho}{\mu_e} = \frac{dT}{dt} \frac{d\rho}{dT} = -i \left[\mathcal{H}_m, \rho\right] - \left\{\Gamma, (\rho - \rho^{eq})\right\}$$

$$\frac{diag(1,1,1,0)}{diag(1,1,1,0)}$$

$$\frac{diag(1,1,1,0)}{diag(1,1,1,0)}$$

$$\frac{d\rho}{dt} = \frac{dT}{2E_{\nu}} \left[V \operatorname{diag}(m_1^2, m_2^2, m_3^2, m_4^2)V^{\dagger} + E_{\nu}\operatorname{diag}(V_e, V_{\mu}, V_{\tau}, 0)\right]$$

$$\frac{d\rho}{dt} = \frac{199\sqrt{2\pi^2} \zeta(4)}{180} G_{\tau} \frac{T}{M_W^2} \left(\frac{1}{2}T_{\nu}^4 \cos\theta_W \rho_{\mu}\right)$$

$$V_{\mu} = -\frac{199\sqrt{2\pi^2} \zeta(4)}{180} G_{\tau} \frac{TT_{\mu}^4}{M_W^4} \left(\frac{1}{2}T_{\nu}^4 \cos\theta_W \rho_{\mu}\right)$$

$$V_{\nu} = -\frac{199\sqrt{2\pi^2} \zeta(4)}{180} G_{\tau} \frac{TT_{\mu}^4}{M_W^4} \left(\frac{1}{2}T_{\nu}^4 \cos\theta_W \rho_{\tau}\right)$$

v thermal masses

Big Bang Nucleosynthesis 1. Neutrino kinetic equations What happens qualitatively:

 $(\rho_{\nu_{\rm s}}\simeq 0)$

 $(\rho_{\nu_{\rm s}} \nearrow)$

- for $T \gg {
 m MeV}$, matter effects suppress mixing
- as T decreases, at a certain point oscillations $\nu_{\rm active} \leftrightarrow \nu_{\rm s}$ can begin $(\Delta m_{\rm s}^2, \theta_{\rm s})$
- + redistribution $\nu_{active} \leftrightarrow \nu_{active}$
- meanwhile: u decouple at $T \sim {
 m MeV}, e^+e^-$ annihilate...
- Output: $\rho_{\nu_e}(T), \rho_{\nu_{\mu}}(T), \rho_{\nu_{\tau}}(T), \rho_{\nu_{s}}(T)$

Big Bang Nucleosynthesis 2. n/p ratio

$$\dot{r} \equiv \frac{dT}{dt}\frac{dr}{dT} = \Gamma_{p \to n}(1-r) - r\Gamma_{n \to p} \qquad r = \frac{n_n}{n_n + n_p}$$

weak interactions

 $\dot{T} \sim -H(T,\rho)T$

 $\begin{array}{l} \mbox{Hubble parameter} \\ \mbox{depends on} \\ \rho_{\nu_e} + \rho_{\nu_{\mu}} + \rho_{\nu_{\tau}} + \rho_{\nu_{\rm s}} \end{array}$

 $n \longleftrightarrow p + e^- + \bar{\nu}_e$ $n + \nu_e \longleftrightarrow p + e^ n + e^+ \longleftrightarrow p + \bar{\nu}_e.$

depend on $\rho_{\nu_e}, \rho_{\bar{\nu}_e}$

Big Bang Nucleosynthesis 2. n/p ratio

$$\dot{r} \equiv \frac{dT}{dt}\frac{dr}{dT} = \Gamma_{p \to n}(1-r) - r\Gamma_{n \to p} \qquad r = \frac{n_n}{n_n + n_p}$$

weak interactions

Hubble parameter depends on $\rho_{\nu_e} + \rho_{\nu_{\mu}} + \rho_{\nu_{\tau}} + \rho_{\nu_{s}}$

$$n \longleftrightarrow p + e^- + \bar{\nu}_e$$
$$n + \nu_e \longleftrightarrow p + e^-$$
$$n + e^+ \longleftrightarrow p + \bar{\nu}_e.$$

depend on $\,
ho_{
u_e},
ho_{ar
u_e}$

So, where does a ν_s enter the game?

(A) total energy density \Rightarrow expansion parameter (B) depletion of ν_e density \Rightarrow weak rates

3. Light elements production

A network of Boltzmann equations with up-to-date nuclear rates...

4. Observations

Determinations of primordial ${}^{4}\mathrm{He}$ are somehow controversial.

Conservatively, take $Y_{
m p} = 0.249 \pm 0.009$

(Determinations of D/H are currently less useful.)

Cirelli, Marandella, Strumia, Vissani 2004

LSND

LSND claims evidence for $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ with $\Delta m^{2} \neq \Delta m_{\text{sun, atm}}^{2}$ Requires a new (sterile) neutrino: $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{s} \rightarrow \bar{\nu}_{e}$

(if oscillations)

with mixing $\vec{n} \simeq (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0)$ i.e. $\theta_{es} \theta_{\mu s} \simeq \theta_{LSND}$

 $\Delta m_{\rm LSND}^2 \simeq 1 \ {\rm eV}^2$ $\sin^2 2\theta_{\rm LSND} \simeq 10^{-3}$

LSND

LSND claims evidence for $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ with $\Delta m^{2} \neq \Delta m_{\text{sun, atm}}^{2}$ Requires a new (sterile) neutrino: $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{s} \rightarrow \bar{\nu}_{e}$

(if oscillations)

with mixing $\vec{n} \simeq (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0)$ i.e. $\theta_{es} \theta_{\mu s} \simeq \theta_{LSND}$

 $\Delta m_{\rm LSND}^2 \simeq 1 \ {\rm eV}^2$ $\sin^2 2\theta_{\rm LSND} \simeq 10^{-3}$

BBN excludes the LSND $\nu_{\rm S}$ (too much cosmo expansion)

Sterile neutrinos in cosmology

Neutrinos are important in the Early Universe because they are:

- a lot (as abundant as photons)
- the main component of the (relativistic) energy density that sets the expansion scale
- shaping the growth of galaxies via their free-streaming

An extra $\nu_{\rm s}$ can make a big difference.

Bounds come: from BBN

- T $\sim {
 m MeV}$
- flavor is important
- matter effects in the plasma

Bounds come: from later cosmology (CMB, LSS) - T \leq eV - m_{ν} is important

Neutrinos affect cosmological perturbations (CMB, LSS).

Neutrinos affect cosmological perturbations (CMB, LSS).

cosmological perturbations evolution

 $\Omega_{\mathrm{b}}, \Omega_{\mathrm{DM}}, \tau, \ A_s, H_0, n_s$

 $\Delta m_{
m s}^2, heta_{
m s}$

 $ho_{
u_e},
ho_{
u_\mu},
ho_{
u_ au},
ho_{
u_ au}$

 $\rangle m_{\nu}$

Neutrinos affect cosmological perturbations (CMB, LSS).

 $ho_{
u_e},
ho_{
u_\mu},
ho_{
u_ au},
ho_{
u_ au}$ cosmological perturbations evolution

CMBfast/CAMB

 $\Omega_{
m b}, \Omega_{
m DM}, au,$ $A_s, \overline{H_0}, n_s$

 $\Delta m_{
m s}^2, heta_{
m s}$

 $\rangle m_{\nu}$

Neutrinos affect cosmological perturbations (CMB, LSS).

cosmological perturbations evolution

 $egin{aligned} \Omega_{
m b}, \Omega_{
m DM}, \tau, \ A_s, H_0, n_s \end{aligned}$

 $\Delta m_{
m s}^2, heta_{
m s}$

 $ho_{
u_e},
ho_{
u_\mu},
ho_{
u_ au},
ho_{
u_ au}$

 $\rangle m_{\nu}$

Cosmological Perturbations Neutrinos affect cosmological perturbations (CMB, LSS). Neutrino free-streaming suppresses the growth of LSS on small scales: (more precisely: massive neutrinos contribute to the energy density of the Universe

during MD but they don't source in the Newton equation for $\delta_{\rm dm}$)

$$k_{\rm NR} = 0.018 \ \Omega_{\rm m}^{-1/2} \left(\frac{\sum m_{\nu}}{\rm eV}\right)^{1/2} h_0 \ \rm Mpc^{-1/2} \left(\frac{\Delta P}{\rm eV} - 8f_{\nu} = -8 \frac{\sum m_{\nu}}{(93 \ \rm eV^2)h^2 \Omega_{\rm m}} \right)^{1/2} h_0 \ \rm Mpc^{-1/2}$$

Cosmological Perturbations Neutrinos affect cosmological perturbations (CMB, LSS). Neutrino free-streaming suppresses the growth of LSS on small scales: (more precisely: massive neutrinos contribute to the energy density of the Universe during MD but they don't source in the Newton equation for δ_{dm})

in presence of $\rho_{\nu_e}, \rho_{\nu_{\mu}}, \rho_{\nu_{\tau}}, \rho_{\nu_s}$: $\sum m_i \rho_i < 0.40 \text{ eV}$

Cosmological Perturbations Neutrinos affect cosmological perturbations (CMB, LSS). Neutrino free-streaming suppresses the growth of LSS on small scales: (more precisely: massive neutrinos contribute to the energy density of the Universe

in presence of $\rho_{\nu_e}, \rho_{\nu_{\mu}}, \rho_{\nu_{\tau}}, \rho_{\nu_s}$: $\sum m_i \rho_i < 0.40 \text{ eV}$

 $\nu_{\rm s}$ contribute to $\sum m_{
u} \Rightarrow$ a bound on m_4 i.e. $\Delta m_{\rm s}^2$

Cirelli, Marandella, Strumia, Vissani 2004

LSND

LSND collaboration - Strumia PLB 539 (2002)

$\Delta m_{\rm LSND}^2 \simeq 1 \ {\rm eV}^2$ $\sin^2 2\theta_{\rm LSND} \simeq 10^{-3}$

LSND

 $\Delta m_{\rm LSND}^2 \simeq 1 \ {\rm eV}^2$ $\sin^2 2\theta_{\rm LSND} \simeq 10^{-3}$

LSS excludes the LSND $\nu_{\rm S}$ (too much $\sum m_{\nu}$)

Open a parenthesis:

Open a parenthesis: What if there is a large primordial lepton asymmetry?

 $L_{\nu} = \frac{n_{\nu} - n_{\bar{\nu}}}{n_{\gamma}}$

Foot, Volkas PRL 75 (1995) P.Di Bari (2002, 2003) V.Barger et al., PLB 569 (2003)

An asymmetry $L_{\nu} \approx \eta = 6 \ 10^{-10}$ (baryon asym.) would be natural, but a priori $L_{\nu} \sim \mathcal{O}(10^{-2})$ is possible.

> Dolgov,..., Semikoz (2002) Abazajian, Beacom, Bell (2002) Cuoco,..., Serpico (2004) Serpico, Raffelt (2005)
LSND with lepton asymmetry Due to matter effects, ν_s are less efficiently produced. Portions of the parameter space are reopened:

Chu, Cirelli 2006

Back to standard cosmology.

Cosmological Perturbations Neutrinos affect cosmological perturbations (CMB, LSS). $N_{\nu} = \rho_{\nu_e} + \rho_{\nu_{\mu}} + \rho_{\nu_{\tau}} + \rho_{\nu_s}$ sets the total relativistic energy content and affects the peaks of CMB and LSS spectra:

Caveat: plots for illustrative purposes only, all parameters except N_{ν} are held fixed.

a bound on N_{ν} :

$$N_{\nu} = 5 \pm 1$$

(@ 95% C.L., global fit) Cirelli, Strumia 2006 Seljak et al. 2006

BUT dropping Ly-alpha gives back

$$N_{\nu} \simeq 3$$

CMB/LSS currently give a weak/unsafe bound on N_{ν} , but in the future...

Cosmological Perturbations

Cirelli, Marandella, Strumia, Vissani 2004

Neutrinos from SNe:

- are a lot (99% of emitted energy)
- undergo "extreme" matter effects
- come from very far away (\sim 10 kpc)
- have the right energy (~ 10 MeV) for present detectors

An extra $\nu_{\rm s}$ can make a big difference.

Overall picture confirmed by SN1987a

Thousands of events from future SN Set present bounds

Propose future probes

SK

 v_{τ}

Vµ

core

son of a second second

Matter oscillations in the star mantle:

$$V_{e} = \sqrt{2}G_{F}n_{B} (3Y_{e} - 1)/2, \qquad V_{\tau} = V_{\mu} + V_{\mu\tau}, V_{\mu} = \sqrt{2}G_{F}n_{B} (Y_{e} - 1)/2, \qquad V_{s} = 0,$$

core

mantle

Matter oscillations in the star mantle:

eroliter.

$$V_{e} = \sqrt{2}G_{F}n_{B}(3Y_{e}-1)/2, \qquad V_{\tau} = V_{\mu} - V_{\mu} = \sqrt{2}G_{F}n_{B}(Y_{e}-1)/2, \qquad V_{s} = 0,$$

 v_{s}

V_T

Vµ

SK

Matter eigenstates in the mantle:

Sterile neutrinos in SNe Matter eigenstates in the mantle:

At each crossing: crossing probability

Sterile neutrinos in SNe Matter eigenstates in the mantle:

Output: final fluxes of v_e , v_μ and v_τ on Earth .

SN1987a neutrinos observed $\downarrow \downarrow$ a bound on the loss of $\bar{\nu}_e : \leq 70\%$. $(\bar{\nu}_e p \rightarrow n e^+)$

> Large portions can be probed.

(Beware of theoretical uncertainties...)

The energy dependance of matter/vacuum conversions causes spectral distortions:

Possible very clear feature.

Neutrinos from extragalactic sources

- produced in high-energy astrophysical processes - expected flavor ratios at production $\nu_e : \nu_\mu : \nu_\tau = 1 : 2 : 0$ after (active) oscillations 1 : 1 : 1

An extra $\nu_{\rm s}$ can produce an unbalance.

BUT: - initial fluxes totally unknown

- sterile effects have to be small
- -we tag $\,
 u_{\mu}$ and $\,
 u_{ au},$ which balance anyway

Not a very interesting probe.

Solar neutrinos:

- are a lot, and well studied
- undergo matter effects in the Sun and the Earth
- come from far away (\sim 150 Mkm)

An extra $\nu_{\rm s}$ can make a difference.

Solar neutrinos:

- are a lot, and well studied
- undergo matter effects in the Sun and the Earth
- come from far away (\sim 150 Mkm)

An extra $\nu_{\rm s}$ can make a difference.

Dominant $\nu_e \rightarrow \nu_s$ is excluded by SNO (and SK).

Look for subdominant sterile effects, on top of LMA-MSW $u_e \rightarrow \nu_{\mu,\tau}$.

(i.e. technically, marginalizing over $\Delta m_{12}^2 = (8.0 \pm 0.3) \cdot 10^{-5} \text{eV}^2$, $\tan^2 \theta_{12} = 0.45 \pm 0.05$ parameters)

Computation:

input *v*_e fluxes (spectrum, production regions)
crossings in Sun's matter

Computation:

- input ν_e fluxes (spectrum, production regions)
- crossings in Sun's matter
- vacuum oscillations
- matter oscillations in Earth
- fit dataset: SNO D₂O (CC, NC, ES d/n spectra) SNO salt (CC, NC, ES rates) SK (ES spectra w zenith) SAGE + Gallex + GNO (Ga) Homestake (Cl) KamLAND (reactor $\bar{\nu}_e$ spectra) SSM prediction for ⁸B flux (not critical)

Computation:

- input ν_e fluxes (spectrum, production regions)
- crossings in Sun's matter
- vacuum oscillations
- matter oscillations in Earth
- fit dataset: SNO D₂O (CC, NC, ES d/n spectra) SNO salt (CC, NC, ES rates) SK (ES spectra w zenith) SAGE + Gallex + GNO (Ga) Homestake (Cl) KamLAND (reactor $\bar{\nu}_e$ spectra) SSM prediction for ⁸B flux (not critical)

[technical details] or [skip technical details]

Formalism: evolve the 4x4 neutrino density matrix $\rho_{(E_{\nu},r)}$ from production to detection

Production:

$$\rho = \left(\begin{array}{ccc} 1 & & & \\ & 0 & & \\ & & 0 & \\ & & & 0 \end{array} \right)$$

 ν_e

Formalism: evolve the 4x4 neutrino density matrix $\rho_{(E_{\nu},r)}$ from production to detection

Matter eigenstates:

$$\rho_m = V^{\dagger} \cdot \begin{pmatrix} 1 & & \\ & 0 & \\ & & 0 \end{pmatrix} \cdot V$$
$$V 4x4 \text{ mixing matrix in matter}$$

Formalism: evolve the 4x4 neutrino density matrix $\rho_{(E_{\nu},r)}$ from production to detection

Evolution in the Sun:

Formalism: evolve the 4x4 neutrino density matrix $\rho_{(E_{\nu},r)}$ from production to detection

Evolution in vacuum:

$$\begin{split} \rho_{\mathrm{surf}} &= \mathscr{U}_{\mathrm{vac}} \mathscr{U}_{\mathrm{sun}} \cdot V^{\dagger} \cdot \begin{pmatrix} 1 & & \\ & 0 & \\ & & 0 \end{pmatrix} \cdot V \cdot \mathscr{U}_{\mathrm{sun}}^{\dagger} \mathscr{U}_{\mathrm{vac}}^{\dagger} \\ & & V 4 \mathrm{x} 4 \ \mathrm{mixing} \ \mathrm{matrix} \ \mathrm{in} \ \mathrm{matter} \\ \mathscr{U}_{\mathrm{sun}}^{\dagger} &= \mathrm{diag} \ \exp(i \int_{0}^{r_{*}} dr \frac{m_{\nu_{i}}^{2}}{2E_{\nu}}) \cdot U_{\mathrm{cross}} \cdot \mathrm{diag} \ \exp(i \int_{r_{*}}^{R_{\odot}} dr \frac{m_{\nu_{i}}^{2}}{2E_{\nu}}) \\ \mathscr{U}_{\mathrm{vac}} &= \mathrm{diag} \ \exp(-\frac{i L m_{\nu_{i}}^{2}}{2E_{\nu}}) \end{split}$$

Formalism: evolve the 4x4 neutrino density matrix $\rho_{(E_{\nu},r)}$ from production to detection

Evolution in the Earth:

$$\rho_{\text{det}} = \mathscr{U}_{\text{earth}} \mathscr{U}_{\text{vac}} \mathscr{U}_{\text{sun}} \cdot V^{\dagger} \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \cdot V \cdot \mathscr{U}_{\text{sun}}^{\dagger} \mathscr{U}_{\text{vac}}^{\dagger} \mathscr{U}_{\text{earth}}^{\dagger} \\ V 4 \text{x4 mixing matrix in matter} \\ \mathscr{U}_{\text{sun}}^{\dagger} = \text{diag } \exp(i \int_{0}^{r_{*}} dr \frac{m_{\nu_{i}}^{2}}{2E_{\nu}}) \cdot U_{\text{cross}} \cdot \text{diag } \exp(i \int_{r_{*}}^{R_{\odot}} dr \frac{m_{\nu_{i}}^{2}}{2E_{\nu}}) \\ \mathscr{U}_{\text{vac}} = \text{diag } \exp(-\frac{iLm_{\nu_{i}}^{2}}{2E_{\nu}}) \\ \mathscr{U}_{\text{carth}} = P \cdot \text{diag } \exp(-iL_{\text{mantle/core}} \frac{m_{\nu_{i}}^{2}}{2E_{\nu}}) \cdot P^{\dagger} \\ \text{non-adiabatic} \\ \text{vacuum/mantle} \\ \text{transition} \\ \end{cases}$$

Formalism: evolve the 4x4 neutrino density matrix $\rho_{(E_{\nu},r)}$ from production to detection

Back to flavor basis:

 $P(\nu_e \rightarrow \nu_e) = \rho_{ee}$

$$\rho_{\text{fin}} = V \cdot \mathscr{U}_{\text{earth}} \mathscr{U}_{\text{vac}} \mathscr{U}_{\text{sun}} \cdot V^{\dagger} \cdot \begin{pmatrix} 1 & & \\ & 0 \\ & & 0 \end{pmatrix} \cdot V \cdot \mathscr{U}_{\text{sun}}^{\dagger} \mathscr{U}_{\text{vac}}^{\dagger} \mathscr{U}_{\text{earth}}^{\dagger} \cdot V^{\dagger}$$

$$V 4x4 \text{ mixing matrix in matter}$$

$$\mathscr{U}_{\text{sun}}^{\dagger} = \text{diag } \exp(i \int_{0}^{r_{*}} dr \frac{m_{\nu_{i}}^{2}}{2E_{\nu}}) \cdot U_{\text{cross}} \cdot \text{diag } \exp(i \int_{r_{*}}^{R_{\odot}} dr \frac{m_{\nu_{i}}^{2}}{2E_{\nu}})$$

$$\mathscr{U}_{\text{vac}} = \text{diag } \exp(-\frac{iLm_{\nu_{i}}^{2}}{2E_{\nu}})$$

$$\mathscr{U}_{\text{earth}} = P \cdot \text{diag } \exp(-iL_{\text{mantle/core}} \frac{m_{\nu_{i}}^{2}}{2E_{\nu}}) \cdot P^{\dagger}$$
From the final, evolved ρ_{fin} : oscillation quantities:

$$P(\nu_{c} \to \nu_{c}) = \rho_{ce} \qquad P(\nu_{c} \to \nu_{s}) = \rho_{cs} \qquad \text{etc.}$$

 $(\nu_e \rightarrow \nu_s) = \rho_{es}$

1% deviation $A_{\rm d/n}^{\rm ES}$ (Mton Water Cerenkov)

2% deviation $A_{d/n}$ (Borexino? KamLAND?)

2% deviation $A_{\rm s/w}$ (Borexino?)

Cirelli, Marandella, Strumia, Vissani 2004

The energy dependance of matter/vacuum conversions causes spectral distortions:

The effects are there at low energy: $E_{\nu} \lesssim \text{few MeV}$.

Sterile neutrinos in the Sun What is the "still allowed component" of sterile in solar neutrinos?

Sterile neutrinos in the Sun What is the "still allowed component" of sterile in solar neutrinos? You mean the limit case $\nu_e \to \cos \theta_{\rm s} \ \nu_{\mu,\tau} + \sin \theta_{\rm s} \ \nu_{\rm s}$ (with large $\Delta m_{\rm s}^2$,

energy-indep. oscillations)

Sterile neutrinos in atmo+LBL

Atmospheric neutrinos:

- are a lot, and well studied
- may undergo matter effects in Earth (but no resonances)
- are detected via NC and CC

An extra $\nu_{\rm s}$ can make a difference.

Sterile neutrinos in atmo+LBL

Atmospheric neutrinos:

- are a lot, and well studied
- may undergo matter effects in Earth (but no resonances)
- are detected via NC and CC

An extra $\nu_{\rm s}$ can make a difference.

Dominant $u_{\mu} \rightarrow \nu_{s}$ is excluded. [details]

Look for subdominant sterile effects, on top of $\nu_{\mu} \rightarrow \nu_{\tau}$. \Rightarrow None found. Exclusion regions. Dataset: SK + Macro + K2K.

(i.e. technically, marginalizing over $\Delta m^2_{23} = (2.5 \pm 0.2) \cdot 10^{-3} \, \text{eV}^2$, $\sin^2 2\theta_{23} = 1.02 \pm 0.04$ parameters)
Sterile neutrinos in atmo+LBL

1%, 5% anomaly in NC at MINOS

Vissani 2004

Cirelli, Marandella, Strumia,

Sterile neutrinos in atmo+LBL What is the "still allowed component" of sterile in atmospheric nus?

Sterile neutrinos in atmo+LBL What is the "still allowed component" of sterile in atmospheric nus? You mean the limit case $\nu_{\mu} \rightarrow \cos \theta_{s} \nu_{\tau} + \sin \theta_{s} \nu_{s}$ (with large Δm_{s}^{2} ,

(with large $\Delta m_{
m s}^2,$ energy-indep. oscillations)

Sterile neutrinos in SBL exp.s

Many reactor/beam experiments looked for $\bar{\nu}_e/\nu_\mu \rightarrow \nu_s$ disappearance in neutrino fluxes/beams. \Rightarrow Null results. Exclusion regions.

 $\begin{array}{l} \textbf{Dataset:} & - \textbf{Chooz, Bugey} (\bar{\nu}_e \text{ disappearance}) \\ & - \textbf{CDHS, CCFR} (\bar{\nu}_\mu, \nu_\mu \text{ disappearance}) \\ & - \textbf{Karmen (null } \bar{\nu}_\mu \rightarrow \bar{\nu}_e) \\ & - \textbf{Nomad, Chorus (null } \nu_{\mu,e} \rightarrow \nu_\tau \text{ and } \nu_\mu \rightarrow \nu_e) \\ & - \textbf{LSND does not fit} \end{array}$

 $\begin{array}{ll} \text{Method:} & \text{simply vacuum oscillations, with } \Delta m_{\mathrm{s}}^2 \gg \Delta m_{\mathrm{atm, sun}}^2 \\ & P(\nu_{\ell} \to \nu_{\ell'}) = \left\{ \begin{array}{ll} 1 - 4|V_{\ell 4}^2|(1 - |V_{\ell 4}^2|)\sin^2(\Delta m_{14}^2 L/4E_{\nu}) & \text{for } \ell = \ell' \\ & 4|V_{\ell 4}^2||V_{\ell' 4}^2|\sin^2(\Delta m_{14}^2 L/4E_{\nu}) & \text{for } \ell \neq \ell' \end{array} \right. \end{array}$

Sterile neutrinos in SBL exp.s

2% $\bar{\nu}_e$ disappearance at SBL

Combined Results

Conclusions

 the direct/easy ways for sterile neutrinos are now closed
 look for subdominant effects, refine analysis, include all sources
 no significant evidence found, powerful bounds imposed in particular:

LSND excluded by std cosmology, reallowed if large asymmetry

lacksim C cosmo, astro, u exps probe different, complementary scenarios

Conclusions & Executive Summary the direct/easy ways for sterile neutrinos are now closed look for subdominant effects, refine analysis, include all sources **v** no significant evidence found, powerful bounds imposed in particular: excluded by std cosmology, reallowed if large asymmetry \mathbf{T} cosmo, astro, ν exps probe different, complementary scenarios MiniBooNE? cosmology: measure He and D better, next CMB, LSS will be decisive low energy solar neutrinos brace for the next SN: 10⁴ events (but improve theory) combine data from different fields

Iztra Slides

$$\dot{\Theta} + ik\mu\Theta = -\dot{\Phi} - ik\mu\Psi - \dot{\tau}\left[\Theta_0 - \Theta + \mu v_{\rm b} - 1/2\mathcal{P}_2(\mu)\Pi\right]$$
$$\dot{\tau} = d\tau/d\eta = -n_e\sigma_T a \qquad \Pi = \Theta_2 + \Theta_{P2} + \Theta_{P0}$$
$$\dot{\Theta}_P + ik\mu\Theta_P = -\dot{\tau}\left[\Theta_P + 1/2(1 - \mathcal{P}_2(\mu))\Pi\right]$$

 $\left. \begin{aligned} \dot{\delta}_{\rm dm} + ikv_{\rm dm} &= -3\dot{\Phi} \\ \dot{v}_{\rm dm} + \frac{\dot{a}}{a}v_{\rm dm} &= -ik\Psi \end{aligned} \right\} \ {\rm dark\ matter} \label{eq:dm}$

 $\dot{\mathcal{N}} + i \frac{q_{\nu}}{E_{\nu}} k \mu \mathcal{N} = -\dot{\Phi} - i \frac{E_{\nu}}{q_{\nu}} k \mu \Psi \Big\} \text{neutrinos}$

Dodelson's (Chicago, 2003) notations

(k)

photons

$$\begin{split} \dot{\delta}_{\rm dm} + ikv_{\rm dm} &= -3\dot{\Phi} \\ \dot{v}_{\rm dm} + \frac{\dot{a}}{a}v_{\rm dm} &= -ik\Psi \end{split} \\ \dot{\delta}_{\rm b} + ikv_{\rm b} &= -3\dot{\Phi} \\ \dot{v}_{\rm b} + \frac{\dot{a}}{a}v_{\rm b} &= -ik\Psi + \frac{\dot{\tau}}{R} [v_{\rm b} + 3i\Theta_1] \end{aligned} \\ \end{split}$$
 CMB Power spectrum $C_\ell \propto \int dk [\dots] \Theta_\ell(k) \\ \frac{1}{2} \int dk [\dots] \Theta_\ell(k) \\ \frac{1}{2}$

Matter Power spect. $P(k) \propto \langle \delta_{\rm m}(k)^2 \rangle$

$$\begin{aligned} k^2 \Phi + 3\frac{\dot{a}}{a} \left(\dot{\Phi} - \Psi \frac{\dot{a}}{a} \right) &= 4\pi G_N a^2 \left[\rho_{\rm m} \delta_{\rm m} + 4\rho_{\rm r} \delta_{\rm r} \right] \\ k^2 \left(\Phi + \Psi \right) &= -32\pi G_N a^2 \rho_{\rm r} \Theta_{\rm r,2} \end{aligned} \right\} \text{ metric}$$

Cosmological Perturbations $\dot{\Theta} + ik\mu\Theta = -\dot{\Phi} - ik\mu\Psi - \dot{\tau}\left[\Theta_0 - \Theta + \mu v_{\rm b} - 1/2\,\mathcal{P}_2(\mu)\Pi\right]$ $\dot{\tau} = d\tau/d\eta = -n_e\sigma_T a$ $\Pi = \Theta_2 + \Theta_{P2} + \Theta_{P0}$ photons $f(\vec{x}, \vec{p}) = \frac{1}{e^{\frac{p}{T+\delta T}} - 1}$ $\Theta = \frac{\delta T}{T}$ CMB Power spectrum $\mu = \hat{k} \cdot \hat{p}$ Fourier: $\Theta(\vec{x}, \vec{p}, t) \longrightarrow \Theta(k, \mu, \eta)$ $C_\ell \propto \int dk [\ldots] \Theta_\ell(k)$ Expand in multipoles: $\Theta_{\ell}(k,\eta) = \frac{1}{(-1)^{\ell}} \int_{-1}^{1} d\mu \frac{1}{2} \mathcal{P}(\mu) \Theta(k,\mu,\eta)$ $\dot{v}_{\rm b} + \frac{\dot{a}}{a}v_{\rm b} = -ik\Psi + \frac{\dot{\tau}}{R}\left[v_{\rm b} + 3i\Theta_1\right]$ Matter Power spect.

$$\dot{\mathcal{N}} + i \frac{q_{\nu}}{E_{\nu}} k \mu \mathcal{N} = -\dot{\Phi} - i \frac{E_{\nu}}{q_{\nu}} k \mu \Psi \Big\} \text{ neutrinos}$$

Matter Power spect. $P(k) \propto \langle \delta_{\rm m}(k)^2 \rangle$

$$\begin{aligned} k^2 \Phi + 3\frac{\dot{a}}{a} \left(\dot{\Phi} - \Psi \frac{\dot{a}}{a} \right) &= 4\pi G_N a^2 \left[\rho_{\rm m} \delta_{\rm m} + 4\rho_{\rm r} \delta_{\rm r} \right] \\ k^2 \left(\Phi + \Psi \right) &= -32\pi G_N a^2 \rho_{\rm r} \Theta_{\rm r,2} \end{aligned} \right\} \text{ metric}$$

$$\begin{split} \dot{\Theta} + ik\mu\Theta &= -\dot{\Phi} - ik\mu\Psi - \dot{\tau} \begin{bmatrix} \Theta_0 - \Theta + \mu v_{\rm b} - 1/2 \,\mathcal{P}_2(\mu)\Pi \end{bmatrix} \\ \dot{\tau} &= d\tau/d\eta = -n_e \sigma_T a \qquad \Pi = \Theta_2 + \Theta_{P2} + \Theta_{P0} \\ \dot{\Theta}_P + ik\mu\Theta_P &= -\dot{\tau} \begin{bmatrix} \Theta_P + 1/2 \left(1 - \mathcal{P}_2(\mu)\right)\Pi \end{bmatrix} \end{split}$$

photons

 $\dot{\delta}_{\rm dm} + ikv_{\rm dm} = -3\dot{\Phi} \\ \dot{v}_{\rm dm} + \frac{\dot{a}}{a}v_{\rm dm} = -ik\Psi$ dark matter

$$\delta_{\rm dm} = \frac{\delta \rho_{\rm dm}}{\rho_{\rm dm}} \qquad \rho_{\rm dm}(\vec{x}, t) = \rho_{\rm dm}^0 \left(1 + \delta_{\rm dm}(\vec{x}, t)\right)$$

and velocity $\,v_{
m dm}$

Fourier: $\delta_{dm}(\vec{x},t) \longrightarrow \delta_{dm}(k,\eta)$ $v_{dm}(\vec{x},t) \longrightarrow v_{dm}(k,\eta)$ CMB Power spectrum $C_\ell \propto \int dk [\ldots] \Theta_\ell(k)$ $\int_{\frac{1}{2}} \int_{\frac{1}{2}} \int_{\frac{1}$

$$k^{2}\Phi + 3\frac{\dot{a}}{a}\left(\dot{\Phi} - \Psi\frac{\dot{a}}{a}\right) = 4\pi G_{N}a^{2}\left[\rho_{\rm m}\delta_{\rm m} + 4\rho_{\rm r}\delta_{\rm r}\right]$$
 metric
$$k^{2}\left(\Phi + \Psi\right) = -32\pi G_{N}a^{2}\rho_{\rm r}\Theta_{\rm r,2}$$

 $\dot{\Theta} + ik\mu\Theta = -\dot{\Phi} - ik\mu\Psi - \dot{\tau}\left[\Theta_0 - \Theta + \mu v_{\rm b} - 1/2\,\mathcal{P}_2(\mu)\Pi\right]$ $\dot{\tau} = d\tau/d\eta = -n_e \sigma_T a$ $\Pi = \Theta_2 + \Theta_{P2} + \Theta_{P0}$ > photons $\dot{\Theta}_P + ik\mu\Theta_P = -\dot{\tau} \left[\Theta_P + 1/2(1 - \mathcal{P}_2(\mu))\Pi\right]$

 $\left. \begin{aligned} \dot{\delta}_{\rm dm} + ikv_{\rm dm} &= -3\dot{\Phi} \\ \dot{v}_{\rm dm} + \frac{\dot{a}}{a}v_{\rm dm} &= -ik\Psi \end{aligned} \right\} \ {\rm dark\ matter} \ \ \, \end{aligned}$ $\begin{aligned} \dot{\delta}_{\rm b} + ikv_{\rm b} &= -3\dot{\Phi} \\ \dot{v}_{\rm b} + \frac{\dot{a}}{a}v_{\rm b} &= -ik\Psi + \frac{\dot{\tau}}{R} \left[v_{\rm b} + 3i\Theta_1 \right] \end{aligned}$ baryons $\delta_{
m b}(k,\eta)$ Thomson scattering $e^-\gamma \longleftrightarrow e^-\gamma$ $v_{\rm b}(k,\eta)$

CMB Power spectrum $C_\ell \propto \int dk [\ldots] \Theta_\ell(k)$

Matter Power spect. $P(k) \propto \langle \delta_{
m m}(k)^2 \rangle$

$$k^{2}\Phi + 3\frac{\dot{a}}{a}\left(\dot{\Phi} - \Psi\frac{\dot{a}}{a}\right) = 4\pi G_{N}a^{2}\left[\rho_{m}\delta_{m} + 4\rho_{r}\delta_{r}\right]$$
 metric
$$k^{2}\left(\Phi + \Psi\right) = -32\pi G_{N}a^{2}\rho_{r}\Theta_{r,2}$$

$$\begin{split} \dot{\Theta} + ik\mu\Theta &= -\dot{\Phi} - ik\mu\Psi - \dot{\tau} \begin{bmatrix} \Theta_0 - \Theta + \mu v_{\rm b} - 1/2 \,\mathcal{P}_2(\mu)\Pi \end{bmatrix} \\ \dot{\tau} &= d\tau/d\eta = -n_e\sigma_T a \qquad \Pi = \Theta_2 + \Theta_{P2} + \Theta_{P0} \\ \dot{\Theta}_P + ik\mu\Theta_P &= -\dot{\tau} \begin{bmatrix} \Theta_P + 1/2(1 - \mathcal{P}_2(\mu))\Pi \end{bmatrix} \end{split}$$

photons

CMB Power spectrum

 $C_{\ell} \propto \int dk [\ldots] \Theta_{\ell}(k)$

Matter Power spect.

C

 $P(k) \propto \langle \delta_{\rm m}(k)^2 \rangle$

$$\dot{\delta}_{
m dm} + ikv_{
m dm} = -3\dot{\Phi} \ \dot{v}_{
m dm} + rac{\dot{a}}{a}v_{
m dm} = -ik\Psi igg\} \, {
m dark \ matter}$$

scalar metric perturbations:
$$g_{\mu\nu} = \eta_{\mu\nu} + \delta \eta_{\mu\nu} (\Psi, \Phi)$$

 $g_{\mu\nu} = \begin{pmatrix} -1 - 2\Psi & 0 & 0 & 0 \\ 0 & a^2(1 + 2\Phi) & 0 & 0 \\ 0 & 0 & a^2(1 + 2\Phi) & 0 \\ 0 & 0 & 0 & a^2(1 + 2\Phi) \end{pmatrix}$

Fourier: $\Psi(\vec{x},t) \longrightarrow \Psi(k,\eta)$ $\Phi(\vec{x},t) \longrightarrow \Phi(k,\eta)$

$$k^{2}\Phi + 3\frac{\dot{a}}{a}\left(\dot{\Phi} - \Psi\frac{\dot{a}}{a}\right) = 4\pi G_{N}a^{2}\left[\rho_{\rm m}\delta_{\rm m} + 4\rho_{\rm r}\delta_{\rm r}\right]$$
 metric
$$k^{2}\left(\Phi + \Psi\right) = -32\pi G_{N}a^{2}\rho_{\rm r}\Theta_{\rm r,2}$$

 $\dot{\Theta} + ik\mu\Theta = -\dot{\Phi} - ik\mu\Psi - \dot{\tau}\left[\Theta_0 - \Theta + \mu v_{\rm b} - 1/2\mathcal{P}_2(\mu)\Pi\right]$ $\dot{\tau} = d\tau/d\eta = -n_e \sigma_T a$ $\Pi = \Theta_2 + \Theta_{P2} + \Theta_{P0}$ > photons $\dot{\Theta}_P + ik\mu\Theta_P = -\dot{\tau} \left[\Theta_P + 1/2(1 - \mathcal{P}_2(\mu))\Pi\right]$

CMB Power spectrum

 $C_\ell \propto \int dk [\ldots] \Theta_\ell(k)$

 $\left. \begin{aligned} \dot{\delta}_{\rm dm} + ikv_{\rm dm} &= -3\dot{\Phi} \\ \dot{v}_{\rm dm} + \frac{\dot{a}}{a}v_{\rm dm} &= -ik\Psi \end{aligned} \right\} \ {\rm dark\ matter}$ $\dot{\delta}_{\rm b} + ikv_{\rm b} = -3\dot{\Phi} \qquad R = 3\rho_{\rm b}^0/4\rho_{\gamma}^0 \\ \dot{v}_{\rm b} + \frac{\dot{a}}{a}v_{\rm b} = -ik\Psi + \frac{\dot{\tau}}{R} \left[v_{\rm b} + 3i\Theta_1\right]$ baryons $\dot{\mathcal{N}} + i \frac{q_{\nu}}{E_{\nu}} k \mu \mathcal{N} = -\dot{\Phi} - i \frac{E_{\nu}}{q_{\nu}} k \mu \Psi \right\} \text{neutrinos}$

massless or massive neutrinos $E_{\nu} = \sqrt{p_{\nu}^2 + m_{\nu}^2}$ Fourier: $\mathcal{N}(\vec{x}, \vec{p}, t) \longrightarrow \mathcal{N}(k, \mu, \eta)$ Expand in multipoles: $\mathcal{N}_{\ell}(k, \mu, \eta)$

 $k^2 \left(\Phi + \Psi \right) = -32 \pi G_N a^2 \rho_r \Theta_{r,2}$

Matter Power spect. $P(k) \propto \langle \delta_{\rm m}(k)^2 \rangle$

etric

 $\dot{\Theta} + ik\mu\Theta = -\dot{\Phi} - ik\mu\Psi - \dot{\tau}\left[\Theta_0 - \Theta + \mu v_{\rm b} - 1/2\,\mathcal{P}_2(\mu)\Pi\right]$ $\dot{\tau} = d\tau/d\eta = -n_e \sigma_T a$ $\Pi = \Theta_2 + \Theta_{P2} + \Theta_{P0}$ hotons $\dot{\Theta}_P + ik\mu\Theta_P = -\dot{\tau}\left[\Theta_P + 1/2(1 - \mathcal{P}_2(\mu))\Pi\right]$

 $\left. \begin{aligned} \dot{\delta}_{\rm dm} + ikv_{\rm dm} &= -3\dot{\Phi} \\ \dot{v}_{\rm dm} + \frac{\dot{a}}{a}v_{\rm dm} &= -ik\Psi \end{aligned} \right\} \ {\rm dark\ matter}$ $\dot{\delta}_{\rm b} + ikv_{\rm b} = -3\dot{\Phi} \qquad R = 3\rho_{\rm b}^0/4\rho_{\gamma}^0 \\ \dot{v}_{\rm b} + \frac{\dot{a}}{a}v_{\rm b} = -ik\Psi + \frac{\dot{\tau}}{R} \left[v_{\rm b} + 3i\Theta_1\right]$ baryons $\dot{\mathcal{N}} + i \frac{q_{\nu}}{E_{\nu}} k \mu \mathcal{N} = -\dot{\Phi} - i \frac{E_{\nu}}{q_{\nu}} k \mu \Psi \bigg\} \text{neutrinos}$

CMB Power spectrum $C_\ell \propto \int dk [\ldots] \Theta_\ell(k)$

Matter Power spect. $P(k) \propto \langle \delta_{\rm m}(k)^2 \rangle$

$$k^{2}\Phi + 3\frac{\dot{a}}{a}\left(\dot{\Phi} - \Psi\frac{\dot{a}}{a}\right) = 4\pi G_{N}a^{2}\left[\rho_{m}\delta_{m} + 4\rho_{r}\delta_{r}\right]$$
 metric
$$k^{2}\left(\Phi + \Psi\right) = -32\pi G_{N}a^{2}\rho_{r}\Theta_{r,2}$$

= some highly non trivial steps

WMAP

SDSS, 2dF

Keck, Hawaii

HST

LSS redshift survey

natter power spectrum

SNIa luminosity distance

Lyman-alpha forest

$\delta_{\mathrm{F}}(\lambda)$ Counts -1 0 1 0 20004000	(a)	Mrs M	MM.M. MM.M.M.	M.M.M.	Mar Mar	Murun M	M.M.M.	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
1 0 1- 4	(c)	4400	4500	4600	4700	4800	4900	5000

CMB Temperature and Polarization:

- WMAP 3-years (TT, TE, EE spectra) WMAP Science Team, astro-ph/0603449 ->
- Boomerang 2003 (TT, TE, EE) Boomerang Coll., astro-ph/0507494, astro-ph/0507507, astro-ph/0507514
- ACBAR (TT) Kuo et al., astro-ph/0212289 \rightarrow
- CAPMAP (EE) Barkats et al., astro-ph/0409380
- CBI (TT, EE) Readhead et al., astro-ph/0402359, astro-ph/0409569, Sievers at al., astro-ph/0509203 \rightarrow
- DASI (TE, EE) Leitch et al., astro-ph/0409357
- VSA (TT) Grainge et al., astro-ph/0212495

LSS galaxy redshift surveys: dealing with bias and non-linearities as

- SDSS SDSS Coll., astro-ph/0310725 →
- 2dF 2dF Coll., astro-ph/0501174

$$P_{\rm gal}(k) = b^2 \frac{1+Q \ k^2}{1+A \ k} P(k)$$

Baryon Acoustic Oscillations: in terms of a

Eisenstein et al., astro-ph/0501171

measurement of A =

$$\left(\frac{D_{\rm A}^2 cz}{H(z)}\right)^{1/3} \frac{\sqrt{\Omega_{\rm matter}} H_0^2}{0.35 \ c}$$

[back]

Lyman- α Forest:

- Croft Croft et al., astro-ph/0012324
- SDSS SDSS Coll., astro-ph/0407377

Type Ia Supernovae:

- SST Gold sample Riess et al., astro-ph/0402512 \rightarrow
- SNLS Astier et al., astro-ph/0510447 ->

Hubble constant:

 $h = 0.72 \pm 0.08$ $H_0 = 100h \text{ km/sec/Mpc}$ HST Project, Freedman et al., astro-ph/0012376

The computational tool

as opposed to:

CosmoMC

CMBfast/CAMB

CMBfast/CAMB

We use our own code in MATHEMATICA5.2

evolve cosmological perturbations,
compute spectra and

- run statistical comparisons with data.

(Recombination is implemented calling recfast.)

We adopt gaussian statistics.

For Standard Cosmology we obtain:

fit	A_s	h	n_s	au	$100\Omega_b h^2$	$\Omega_{ m DM} h^2$
WMAP3	0.80 ± 0.05	0.704 ± 0.033	0.935 ± 0.019	0.081 ± 0.030	2.24 ± 0.10	0.113 ± 0.010
Global	0.84 ± 0.04	0.729 ± 0.013	0.951 ± 0.012	0.121 ± 0.025	2.36 ± 0.07	0.117 ± 0.003

(assumes 3.04 massless, freely-streaming neutrinos).

Comparing our code

WMAP Science Team analysis:

 $\Omega_{\rm b} h^2$

1.05

<u>ت</u> 0.95

0.9

0.85

0.018

0.9

8.0 e⁻⁵

0.7

0.6

0.018

fit

WMAP3

Global

0.02

0.022

 $\Omega_{\rm h} h^2$

0.024

0.026

0.7

0.8

 $e^{-2\tau}$

— AI I

0.9

	WMAP	WMAP+	WMAP+	WMAP +
	Only	SDSS	LRG	SN Gold
Parameter				
$100\Omega_b h^2$	$2.233^{+0.072}_{-0.091}$	$2.233^{+0.062}_{-0.086}$	$2.242^{+0.062}_{-0.084}$	$2.227^{+0.065}_{-0.082}$
$\Omega_m h^2$	$0.1268^{+0.0073}_{-0.0128}$	$0.1329^{+0.0057}_{-0.0109}$	$0.1337\substack{+0.0047\\-0.0098}$	$0.1349\substack{+0.0054\\-0.0106}$
h	$0.734_{-0.038}^{+0.028}$	$0.709^{+0.024}_{-0.032}$	$0.709\substack{+0.016\\-0.023}$	$0.701\substack{+0.020\\-0.026}$
A	$0.801\substack{+0.043\\-0.054}$	$0.813^{+0.042}_{-0.052}$	$0.816\substack{+0.042\\-0.049}$	$0.827\substack{+0.045\\-0.053}$
au	$0.088^{+0.028}_{-0.034}$	$0.079^{+0.029}_{-0.032}$	$0.082^{+0.028}_{-0.033}$	$0.079^{+0.028}_{-0.034}$
n_s	$0.951^{+0.015}_{-0.019}$	$0.948^{+0.015}_{-0.018}$	$0.951^{+0.014}_{-0.018}$	$0.946\substack{+0.015\\-0.019}$
σ_8	$0.744_{-0.060}^{+0.050}$	$0.772^{+0.036}_{-0.048}$	$0.781\substack{+0.032\\-0.045}$	$0.784_{-0.049}^{+0.035}$
Ω_m	$0.238\substack{+0.027\\-0.045}$	$0.266^{+0.025}_{-0.040}$	$0.267^{+0.017}_{-0.029}$	$0.276^{+0.022}_{-0.036}$

agreement is at **few** % level and within current precision of data [back]

Results How heavy are neutrinos?

Cosmology probes $\sum m_{\nu_i}$.

Bottom Line: Cosmology gives dominant bound on $\sum m_{\nu_i}$; the bound tightens combining relatively less safe datasets.

Neutrino mass bounds

Particle Data Book 2008

LEPTONS

Neutrino Properties

SUM OF THE NEUTRINO MASSES, $m_{\rm tot}$

(Defined in the above note), of effectively stable neutrinos (i.e., those with mean lives greater than or equal to the age of the universe). These papers assumed Dirac neutrinos. When necessary, we have generalized the results reported so they apply to $m_{\rm tot}$. For other limits, see SZA-LAY 76, VYSOTSKY 77, BERNSTEIN 81, FREESE 84, SCHRAMM 84, and COWSIK 85.

VAL	UE (eV)	CL%	DOCUMENT ID		TECN	COMMENT
••	• We d	do not use the follow	ving data for avera	ges,	fits, limi	ts, etc. ● ● ●
<	0.24	95	⁵⁴ CIRELLI	06	COSM	
<	0.62	95	HANNESTAD	06	COSM	
<	0.52	95	⁰⁶ KRISTIANSEN	06	COSM	
<	0.17	95	⁵⁴ SELJAK	06	COSM	
<	2.0	95	⁵⁷ ICHIKAWA	05	COSM	
<	0.75	Į	⁵⁸ BARGER	04	COSM	
<	1.0	Į	⁵⁹ CROTTY	04	COSM	
<	0.7	(⁶⁰ SPERGEL	03	COSM	WMAP
<	0.9	6	⁵¹ LEWIS	02	COSM	
<	4.2	(⁵² WANG	02	COSM	СМВ
<	2.7	(⁵³ FUKUGITA	00	COSM	
<	5.5	(⁵⁴ CROFT	99	ASTR	Ly α power spec
$<\!\!1$	80		SZALAY	74	COSM	
<1	32		COWSIK	72	COSM	
<2	80		MARX	72	COSM	
<4	00		GERSHTEIN	66	COSM	

[back]

Results New neutrinos?

All N_{ν} relativistic degrees of freedom contribute to the energy density.

Standard cosmology

Bottom Line: Cosmology seems to suggest **5 neutrinos** (2 extra); but Ly-alpha are mainly driving the suggestion.

Neutrino number bounds

Particle Data Book 2008

Number of Neutrino Types

The neutrinos referred to in this section are those of the Standard SU(2)×U(1) Electroweak Model possibly extended to allow nonzero neutrino masses. Light neutrinos are those with $m < m_Z/2$. The limits are on the number of neutrino mass eigenstates, including ν_1 , ν_2 , and ν_3 .

Limits from Astrophysics and Cosmology

Number of Light ν Types

("light" means < about 1 MeV). See also OLIVE 81. For a review of limits based on Nucleosynthesis, Supernovae, and also on terrestial experiments, see DENEGRI 90. Also see "Big-Bang Nucleosynthesis" in this *Review*.

	VALUE		<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
	• • • We de	o not use the	following	data for averages	, fits,	, limits,	etc. ● ● ●
ĺ	$3 < N_{ m v} < 1$	7	95	³ CIRELLI	06	COSM	
	$2.7 < N_{ u}$ <	< 4.6	95	⁴ HANNESTAD	06	COSM	
	$3.6 < N_{\nu}$ <	< 7.4	95	³ SELJAK	06	COSM	
	< 4.4			⁵ CYBURT	05	COSM	
	< 3.3			⁶ BARGER	03 C	COSM	
	$1.4 < N_{\nu} <$	6.8		⁷ CROTTY	03	COSM	
	$1.9 < N_{\nu} < 1.9$	6.6		⁷ PIERPAOLI	03	COSM	
	$2 < N_{\nu} <$	4		LISI	99		BBN
	< 4.3			OLIVE	99		BBN
	< 4.9			COPI	97		Cosmology
	< 3.6			HATA	97 B		High D/H quasar abs.
	< 4.0			OLIVE	97		BBN; high ⁴ He and ⁷ Li
	< 4.7			CARDALL	96 B	COSM	High D/H quasar abs.
	< 3.9			FIELDS	96	COSM	BBN; high ⁴ He and ⁷ Li
	< 4.5			KERNAN	96	COSM	High D/H quasar abs.
	< 3.6			OLIVE	95		BBN; \geq 3 massless ν
	< 3.3			WALKER	91		Cosmology

Dac

Non-standard modifications

A. a large primordial lepton asymmetry

B. neutrino interactions with new light particles

C. low reheating temperature D. ...

[skip to conclusions]

Non-standard modifications

A. a large primordial lepton asymmetry

Foot, Volkas PRL 75 (1995) P.Di Bari (2002, 2003) V.Barger et al., PLB 569 (2003)

Serpico, Raffelt (2005)

An asymmetry $L_{\nu} \approx \eta = 6 \ 10^{-10}$ (baryon asym.) would be natural, but a priori $L_{\nu} \sim \mathcal{O}(10^{-2})$ is possible. Dolgov..., Semikoz (2002) Abazajian, Beacom, Bell (2002) Cuoco,..., Serpico (2004)

B. neutrino interactions with new light particles

C. low reheating temperature D. ...

 $L_{\nu} = \frac{n_{\nu} - n_{\bar{\nu}}}{n_{\gamma}}$

BBN with lepton asymmetry

For any choice of $\Delta m_{\rm s}^2, \theta_{\rm s}, L_{\nu}$ a prediction from BBN.

BBN with lepton asymmetry - follow separately ρ and ρ - an extra term in the neutrino matter potentials 3. scatterings and $\frac{d\rho}{dt} \equiv \frac{dT}{dt} \frac{d\rho}{dT} = -i \left[\mathcal{H}_m, \rho\right] - \left\{\Gamma, \left(\rho - \rho^{\text{eq}}\right)\right\} \quad \text{absorptions}$ 2. oscillations $\mathcal{H}_m = \frac{1}{2E_{\nu}} \left[V \operatorname{diag}(m_1^2, m_2^2, m_3^2, m_4^2) V^{\dagger} + E_{\nu} \operatorname{diag}(V_e, V_{\mu}, V_{\tau}, 0) \right]$ 1.expansion $\dot{T} \sim -H(T,\rho)T$ $V_e \simeq \pm \sqrt{2}G_F n_\gamma \left[\frac{1}{2} \eta + 2L_{\nu_e} + L_{\nu_\mu} + L_{\nu_\tau} \right] - \frac{199\sqrt{2\pi^2}}{180} \frac{\zeta(4)}{\zeta(3)} G_F \frac{T_\nu}{M_W^2} \left[T^4 + \frac{1}{4} T_\nu^4 \cos^2 \theta_w (\rho_{ee} + \bar{\rho}_{ee}) \right]$ $V_{\mu} \simeq \pm \sqrt{2} G_F n_{\gamma} \left[\frac{1}{2} \eta + L_{\nu_e} + 2L_{\nu_{\mu}} + L_{\nu_{\tau}} \right] - \frac{199\sqrt{2\pi^2}}{180} \frac{\zeta(4)}{\zeta(3)} G_F \frac{T_{\nu}T^4}{M_W^2} \left[\frac{1}{4} T_{\nu}^4 \cos^2 \theta_w (\rho_{\mu\mu} + \bar{\rho}_{\mu\mu}) \right]$ $V_{\tau} \simeq \pm \sqrt{2} G_F n_{\gamma} \left[\frac{1}{2} \eta + L_{\nu_e} + L_{\nu_{\mu}} + 2L_{\nu_{\tau}} \right] - \frac{199\sqrt{2\pi^2}}{180} \frac{\zeta(4)}{\zeta(3)} G_F \frac{T_{\nu}T^4}{M_W^2} \left[\frac{1}{4} T_{\nu}^4 \cos^2 \theta_w (\rho_{\tau\tau} + \bar{\rho}_{\tau\tau}) \right]$ $V_{\rm s} = 0$

v thermal masses

BBN with lepton asymmetry

 $(\rho_{\nu_{\rm s}}\simeq 0)$

 $(
ho_{
u_{
m s}}\ll 1)$

What happens qualitatively:

- for $T \gg \text{MeV}$, matter effects suppress mixing
- despite T decreasing, the asymmetry term inhibits $\nu_{\rm active} \leftrightarrow \nu_{\rm s}$ oscillations

- $u_{\rm s}$ are less efficiently produced (or not at all)

- (also: n/p weak rates affected by $ho_{
u_e}
eq ar{
ho}_{
u_e}$)

Assumptions:

•
$$L_{\nu_e} = L_{\nu_{\mu}} = L_{\nu_{\tau}}$$
 for simplicity

- ullet non-dynamical $L_
 u$
- neglect spectral distortions Fuller et al., 2004-2006

LSS with lepton asymmetry

Recall that

 L_{ν} suppresses $\nu_{\rm s}$ production $(\rho_{\nu_{\rm s}} \ll 1)$: the bound on m_4 i.e. $\Delta m_{\rm s}^2$ is relaxed.

with lepton asymmetry Portions of the parameter space are reopened:

Chu, Cirelli 2006

LSND with lepton asymmetry

Portions of the parameter space are reopened:

Chu, Cirelli 2006

LSND with lepton asymmetry

Portions of the parameter space are reopened:

postulating a primordial asymmetry $L_{
u} \simeq -10^{-4}$ reconciles LSND and cosmology

Chu, Cirelli 2006

Non-standard modifications A. a large primordial lepton asymmetry

B. neutrino interactions with new light particles

C. low reheating temperature D. ...

[skip to conclusions]
Non-standard modifications A. a large primordial lepton asymmetry

B. neutrino interactions with new light particles couplings $g \nu \bar{\nu} \phi$ mediate neutrino decay at late times: neutrinos disappear \Rightarrow not subject to cosmo bounds "Neutrinoless Universe", Beacom, Bell, Dodelson (2004) also for sterile neutrinos $g \nu_{s} \bar{\nu} \phi$ "LSND", Palomares-Ruiz, Pascoli, Schwetz (2005) in general, interacting neutrinos pop up often "MaVaNs", Fardon, Nelson, Weiner (2004) "Late-time masses", Chacko, Hall et al., (2004)

$\begin{array}{l} \textbf{Cosmology with sticky neutrinos} \\ \nu \leftrightarrow \phi \ \text{couplings imply a tightly coupled fluid at recombination} \\ \text{for } g > 10^{-8}, 10^{-14} \ (\text{decay, scattering}) \ \text{Hannestad, Raffelt (2005)} \end{array}$

 \Rightarrow neutrino free streaming is obstructed

 $\begin{array}{l} \textbf{Cosmology with sticky neutrinos} \\ \nu \leftrightarrow \phi \ \text{couplings imply a tightly coupled fluid at recombination} \\ \text{for } g > 10^{-8}, 10^{-14} \ (\text{decay, scattering}) \ \text{Hannestad, Raffelt (2005)} \\ \Rightarrow \text{neutrino free streaming is obstructed} \end{array}$

Boltzmann eqs for tightly coupled fluid + standard ν eqs

 $N_{\nu}^{\mathrm{norm}}, N_{\nu}^{\mathrm{int}}, N_{\phi}, m_{\nu}, m_{\phi}$

 $egin{aligned} \Omega_{
m b}, \Omega_{
m DM}, au, \ A_s, H_0, n_s \end{aligned}$

cosmological perturbations evolution

Cosmology with sticky neutrinos

Case: N_{ν}^{norm} standard neutrinos, N_{ν}^{int} interacting with N_{ϕ} scalars, everything massless.

Standard cosmology

Standard cosmology

[see also Bell, Pierpaoli, Sigurdson, PRD73 (2006)]

7norm

Cosmology with sticky neutrinos

Case: three standard neutrinos (massless), ΔN_{ν} interacting sterile neutrinos, with mass $m_{\rm s}$.

Standard cosmology

Cosmology with sticky neutrinos

Case: three massive neutrinos, interacting with a massless scalar.

Bottom Line: Cosmology **disfavors**, at various degrees, interacting (non-freely streaming) neutrinos.

Cosmological Perturbations

 $\dot{\Theta} + ik\mu\Theta = -\dot{\Phi} - ik\mu\Psi - \dot{\tau}\left[\Theta_0 - \Theta + \mu v_{\rm b} - 1/2\,\mathcal{P}_2(\mu)\Pi\right]$ $\dot{\tau} = d\tau/d\eta = -n_e \sigma_T a$ $\Pi = \Theta_2 + \Theta_{P2} + \Theta_{P0}$ $\dot{\Theta}_P + ik\mu\Theta_P = -\dot{\tau} \left[\Theta_P + 1/2(1 - \mathcal{P}_2(\mu))\Pi\right]$

> photons

 $\left. \begin{array}{l} \dot{\delta}_{\rm dm} + ikv_{\rm dm} = -3\dot{\Phi} \\ \dot{v}_{\rm dm} + \frac{\dot{a}}{a}v_{\rm dm} = -ik\Psi \end{array} \right\} \, {\rm dark \ matter}$ $\dot{\delta}_{\rm b} + ikv_{\rm b} = -3\dot{\Phi} \qquad R = 3\rho_{\rm b}^0/4\rho_{\gamma}^0 \\ \dot{v}_{\rm b} + \frac{\dot{a}}{a}v_{\rm b} = -ik\Psi + \frac{\dot{\tau}}{R} \left[v_{\rm b} + 3i\Theta_1\right]$ baryons $\dot{\mathcal{N}} + i \frac{q_{\nu}}{E_{\nu}} k \mu \mathcal{N} = -\dot{\Phi} - i \frac{E_{\nu}}{q_{\nu}} k \mu \Psi \}$ neutrinos $\dot{\delta}_{\mathbf{x}} = -(1+w)(3\dot{\Phi} + ikv_{\mathbf{x}})$ extra $\dot{v}_{\mathbf{x}} = -ik\Psi + \frac{\dot{a}}{a}\left(1 - 3w\right)iv_{\mathbf{x}} - \frac{w}{1+w}ik\delta_{\mathbf{x}}$ $k^{2}\Phi + 3\frac{\dot{a}}{a}\left(\dot{\Phi} - \Psi\frac{\dot{a}}{a}\right) = 4\pi G_{N}a^{2}\left[\rho_{\rm m}\delta_{\rm m} + 4\rho_{\rm r}\delta_{\rm r}\right]$ metric $k^2 \left(\Phi + \Psi \right) = -32\pi G_N a^2 \rho_{\rm r} \Theta_{\rm r,2}$

Massive particles, interacting among themselves and with neutrinos (i.e.non freely streaming).

A fluid defined by $\delta_{\mathrm{x}}, v_{\mathrm{x}},$ with w = 1/3 when rel, w = 0 when NR.

Contribute to the Rel/NR energy densities.

back

Solar neutrino spectrum

[back]

Sterile neutrinos in atmo+LBL Basics: evidence for oscillations is disappearance of ν_{μ} from below

[back to atmo]

Sterile neutrinos in atmo+LBL

