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Neutrinos in the Cosmo
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Neutrinos in the Cosmo
The Universe is made of: radiation, matter (DM+b+e), dark energy

CMB L S SBBN
NR

and neutrinos
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Neutrinos are significant because:
- main component of the rel energy density that sets expansion rate of the Universe
- (ordinary neutrinos have a mass, so) turn from Rel to NRel at a crucial time
- may free-stream or interact among themselves, or with new light particles
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(1-10 billion y)
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Neutrinos in the Cosmo
So what “neutrinos”?

So what properties are probed by cosmology?

{{

3 ordinary, 
SM neutrinos

extra light degrees of freedom, 
very weakly coupled to SM forces

- neutrino number
- total neutrino mass
- non-conventional interactions

Cosmological data are (mostly)  not  sensitive to:

What are the relevant cosmological probes?
- BBN  (             , flavor is important, primordial plasma)

- later cosmology i.e. CMB+LSS   (          ,         , gravity is the only force)

T ∼ MeV

T ! eV ≈ mν

θactive
m1,2,3 CP−violation∆m

2

active
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Neutrinos affect (indirectly, i.e. gravitationally) the evolution 
of cosmological perturbations in radiation and matter.

cosmological
perturbations

evolution
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Formalism
(=cosmological perturbation theory in one slide)

Π =Θ 2 + ΘP2 + ΘP0

Θ̇ + ikµΘ = −Φ̇ − ikµΨ − τ̇
[

Θ0 − Θ + µvb − 1/2P2(µ)Π
]

Θ̇P + ikµΘP = −τ̇
[

ΘP + 1/2
(

1 − P2(µ)
)

Π
]

v̇b +
ȧ

a
vb = −ikΨ +

τ̇

R

[

vb + 3iΘ1

]

δ̇b + ikvb = −3Φ̇

δ̇dm + ikvdm = −3Φ̇

v̇dm +
ȧ

a
vdm = −ikΨ

R = 3ρ0
b/4ρ0

γ

}
}

}

photons

dark matter

baryons

neutrinos

τ̇ = dτ/dη = −neσT a

}
P (k) ∝ 〈δm(k)2〉

C! ∝

∫
dk[. . .] Θ!(k)

CMB Power spectrum

Matter Power spect.
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Ṅ + i
qν

Eν

kµN = −Φ̇ − i
Eν

qν

kµΨ

k2Φ +3
ȧ

a

(

Φ̇ − Ψ
ȧ

a

)

= 4πGNa2
[

ρmδm + 4ρrδr

]

k2 (Φ + Ψ) = −32πGNa2ρrΘr,2

}metric

Dodelson’s (Chicago, 2003) 
notations
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Θ = δT

T

Θ(!x, !p, t) −→ Θ(k, µ, η)Fourier:

Expand in multipoles:
Θ!(k, η) = 1

(−1)!

∫ 1
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1
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− 1
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ȧ

a

(

Φ̇ − Ψ
ȧ
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An application:
the effect of neutrino mass on the Matter Power Spectrum

- let’s follow            during MD (matter perturbations don’t grow during RD)δdm

e.g. Lesgourgues, Pastor review;
Bond, Efstathiou, Silk, 1980
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An application:
··
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a
δ̇dm ! k2Φ

k2Φ =4 πGNa2[ρmδm + 4ρrΘr,0 + 3Ha
K

(iρmvm + 4ρrΘr,1)]

the effect of neutrino mass on the Matter Power Spectrum
- let’s follow            during MD (matter perturbations don’t grow during RD)δdm
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An application:
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An application:
the effect of neutrino mass on the Matter Power Spectrum

- let’s follow            during MD (matter perturbations don’t grow during RD)δdm

(Newton eq. for         )δdm

- with massless neutrinos:
H2

=
8

3
πGNρm

δ′′
dm

+ 4

3

1

t
δ′
dm

−
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3

1

t2
δdm = 0

a ∝ t
2/3ρm = (ρdm + ρb) ∝ a

−3FRW eq. with
so

⇒
⇒ growing solution

(

˙ =
d
dη

)

δdm ∝ t
2

3 ∝ a
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An application:
the effect of neutrino mass on the Matter Power Spectrum

- at what scales is the effect relevant?
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An application:
the effect of neutrino mass on the Matter Power Spectrum

In summary
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We have the formalism to compute
the effect on cosmological observables.

Let’s compare quantitatively 
with cosmological data.



The dataset

In our analysis of flux statistics, we are interested in the
mean flux hFi and the fluctuations about the mean
!F ð"Þ # Fð"Þ=hFi$ 1. We use F(") to denote the transmit-
ted flux, i.e., the ratio of the flux at a given wavelength " to
the unabsorbed quasar continuum flux at ". In order to find
F("), and hence hFi, it is necessary to make an estimate of
the unabsorbed continuum level. The quantity !F(") is much
less sensitive to the exact assumed continuum level, as hFi
has already been divided out. In the present paper we do not
attempt to make accurate determinations of hFi from our
data. Instead, we use hFi results from the literature and
show how our results (for example, for the amplitude of the
matter power spectrum) would change for given future
determinations of hFi.

In order to calculate !F("), we have two choices. The first
is to estimate a continuum level by fitting a line that passes
through apparently unabsorbed regions of the spectrum.
This has already been done in a semiautomated way for the
HIRES data as described in x 2.1 (see also Burles & Tytler
1998). For the LRIS data, which have much lower spectral
resolution, our !F(") results are more likely to be sensitive to
the continuum-fitting technique used. We therefore com-
pare two techniques applied to the LRIS data. The first is
the automated technique described in CWPHK. This
involves fitting a third-order polynomial through the data
points in a given length of spectrum, rejecting points that lie
2 # below the fit line, and iterating until convergence is
reached. We implement this procedure using 100 Å fitting
segments.

The second method for estimating !F(") is to calculate the
mean flux level of the spectrum directly, rather than first fit-
ting the continuum to scale unabsorbed flux to F ¼ 1. The
mean level must be estimated from a region much larger
than the length scales for which we are interested in measur-
ing variations in !F("). This can be done by either fitting a

low-order polynomial to the spectrum itself (Hui et al. 2001)
or smoothing the spectrum with a large radius filter. We do
the latter, using a 50 Å Gaussian filter. The value of !F(") is
then given by Cð"Þ=CSð"Þ $ 1, where C(") is the number of
counts in the spectrum at a wavelength " and CS(") is the
smoothed number of counts.

Figure 2 illustrates these two methods of determining
!F("). Figure 2a shows the LRIS spectrum of the z ¼ 3:16
quasar Q107+1055, along with the fitted continuum (upper
smooth curve) and the 50 Å smoothed spectrum (lower
smooth curve). Figure 2b compares !F(") estimated using the
fitted continuum and using the smoothed spectrum. The
two methods yield nearly indistinguishable results, with
small differences appearing in regions where the spectrum is
apparently close to the unabsorbed continuum. Figure 2c
shows !F(") from the (continuum-fitted) HIRES spectrum
of Q107+1055. Figure 2d blows up the central 150 Å of the
spectrum, superposing the two LRIS !F("), the HIRES
!F("), and the HIRES !F(") smoothed to the spatial resolu-
tion of the LRIS data. The smoothed HIRES spectrum
matches the LRIS spectrum almost perfectly, providing fur-
ther evidence of the robustness of the !F(") determination.
In x 3.3 we compare the HIRES and LRIS flux power spec-
tra for the four quasars common to both samples. We also
show that the two methods of determining !F(") from the
LRIS spectra yield similar power spectrum results. We
adopt the smoothed spectrum method as our standard,
since it does not involve splitting a spectrum into discrete
segments and is simpler to implement in a robust manner.

As in CWPHK, we scale the individual pixel widths in the
spectra to the size they would have at the mean redshift of
the sample in question. In the present work we do this
assuming that the evolution of H(z) follows that in an
Einstein–de Sitter (EdS) universe, which should be a good
approximation at these high redshifts (see also M00). We

Fig. 2.—Determination of !F("), for the quasar Q1017+1055. (a) LRIS spectrum (wiggly line), the continuumfitted over 100 Å regions (upper smooth curve),
and the spectrum smoothed with a 50 Å Gaussian (lower smooth curve). (b) Fluctuations !F(") derived using the continuum-fitted spectrum and the smoothed
spectrum. The continuum-fitted curve is slightly higher where the two are distinguishable. (c) Fluctuations !F(") from the HIRES spectrum of Q1077+1055.
(d ) Zoom of the central 150 Å showing the two variations of the LRIS spectrum, the HIRES spectrum, and the HIRES spectrum smoothed to the resolution
of the LRIS data (gray curve).
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Figure 1: Our computation of CMB and LSS spectra in standard ΛCDM cosmology, compared with
data.

3 Analysis strategy

We develop our own computational tools for the analysis of the cosmological observables. For what
concerns standard cosmology, our results agree with those of other authors (e.g. the WMAP Sci-
ence Team), but having independent analyses is clearly important. In this respect, our analysis is
particularly independent: it differs from what nowadays is a typical analysis in the way illustrated
in table 2. Cosmological observables are computed using a code written by one of us, rather than
running the commonly used CMBfast or CAMB public codes [8]: this allows us to have a better
control and flexibility on non-standard modifications.

We use the line-of-sight approach in the conformal Newtonian gauge [8, 9, 10]; recombination
can be implemented both in Peebles approximation (see e.g. [31]) and using the external recfast
code [11], which is the option chosen for the present analysis.

The main disadvantage is that our code is almost 2 orders of magnitude slower than CMBfast
or CAMB. In part this happens because, rather than optimizing our code for standard cosmology,
we keep it fully flexible such that non-standard cosmologies are immediately implemented.3 In
part this happens because, while standard codes are written in FORTRAN, our code is written in
Mathematica [12] and we run it on a common laptop (rather than on a cluster of computers).

We now describe the advantages of our approach that allowed us to perform our analysis. Readers
not interested in these technical details can skip the rest of this section. The main point is that,

3For example, the interacting particles considered in this paper are implemented by typing their linear evolution
equations, eq. (10) or eq. (13), in NDSolve form.
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ence Team), but having independent analyses is clearly important. In this respect, our analysis is
particularly independent: it differs from what nowadays is a typical analysis in the way illustrated
in table 2. Cosmological observables are computed using a code written by one of us, rather than
running the commonly used CMBfast or CAMB public codes [8]: this allows us to have a better
control and flexibility on non-standard modifications.

We use the line-of-sight approach in the conformal Newtonian gauge [8, 9, 10]; recombination
can be implemented both in Peebles approximation (see e.g. [31]) and using the external recfast
code [11], which is the option chosen for the present analysis.

The main disadvantage is that our code is almost 2 orders of magnitude slower than CMBfast
or CAMB. In part this happens because, rather than optimizing our code for standard cosmology,
we keep it fully flexible such that non-standard cosmologies are immediately implemented.3 In
part this happens because, while standard codes are written in FORTRAN, our code is written in
Mathematica [12] and we run it on a common laptop (rather than on a cluster of computers).

We now describe the advantages of our approach that allowed us to perform our analysis. Readers
not interested in these technical details can skip the rest of this section. The main point is that,

3For example, the interacting particles considered in this paper are implemented by typing their linear evolution
equations, eq. (10) or eq. (13), in NDSolve form.
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2dF Coll., astro-ph/0501174

- SDSS
- 2dF

The dataset
- WMAP 3-years (TT, TE, EE spectra)
- Boomerang 2003 (TT, TE, EE)
- ACBAR (TT)
- CAPMAP (EE)
- CBI (TT, EE)
- DASI (TE, EE)
- VSA (TT)

CMB Temperature and Polarization:

LSS galaxy redshift surveys:

Lyman-    Forest:α

- Croft
- SDSS

Baryon Acoustic Oscillations:

Type Ia Supernovae:

Hubble constant:

- SST Gold sample
- SNLS

WMAP Science Team, astro-ph/0603449

Boomerang Coll., astro-ph/0507494, astro-ph/0507507, astro-ph/0507514

Kuo et al., astro-ph/0212289

Barkats et al., astro-ph/0409380

Readhead et al., astro-ph/0402359, astro-ph/0409569, Sievers at al., astro-ph/0509203

Leitch et al., astro-ph/0409357

Grainge et al., astro-ph/0212495

SDSS Coll., astro-ph/0310725

Riess et al., astro-ph/0402512

Eisenstein et al., astro-ph/0501171

Croft et al., astro-ph/0012324

SDSS Coll., astro-ph/0407377

Astier et al., astro-ph/0510447

HST Project, Freedman et al., astro-ph/0012376
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The computational tool
We use our own code in                 to 
- evolve cosmological perturbations, 
- compute spectra and 
- run statistical comparisons with data.

CMBfast/CAMB
CosmoMC

CMBfast/CAMB
as opposed to:

We adopt gaussian statistics.

Line-of-sight approach, Newtonian gauge. 
Recombination is  implemented calling recfast.
SZ background is marginalized over.

MCMC



The computational tool
We use our own code in                 to 
- evolve cosmological perturbations, 
- compute spectra and 
- run statistical comparisons with data.

CMBfast/CAMB
CosmoMC

CMBfast/CAMB
as opposed to:

We adopt gaussian statistics.

Line-of-sight approach, Newtonian gauge. 
Recombination is  implemented calling recfast.
SZ background is marginalized over.

MCMC

slower, not fully optimized, 
intrinsic gaussian “systematics”
customizable, analytic computations, 
analytic dependance on cosmo parameters
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Figure 3: Fit of cosmological data at 68, 90 and 99% C.L. The shaded areas show our global fit
without Lyman-α, and the dotted lines our WMAP3-only fit, such that this figure can be directly
compared with the analogous WMAP Science Team plots in fig. 10 of [7].

can need one independent chain with ∼ 105 points every time one wants to analyze a (sub)set of
data [7].

The Gaussian approximation has no ‘statistical’ uncertainty due to finite MCMC sampling but it
introduces a ‘systematic’ uncertainty. This is small near the expansion point (chosen to be close to
the best-fit point) and grows when one goes far from it. At some point data become accurate enough
that the region singled out by them is small enough to make the Gaussian approximation a good one.
By construction, the Gaussian approximation reproduces the same best-fit point (small differences
between our and other analyses on common studies are due to different data-sets, different code, etc.)
and the confidence regions with small enough confidence levels, and fails at larger confidence levels.
In practice, we care about 90%, 99% and maybe 99.9% confidence levels. Fig. 3 is our crucial test
and it shows that the contours corresponding to such confidence levels are reproduced in an fairly
accurate way when comparing with the WMAP Science Team analysis. Notice that the Gaussian
approximation needs not to be and is not accurate enough to analyze every single piece of data,
but it allows to correctly fit the full data-set. Some non-standard cosmological parameters are still
subject to ‘degeneracies’: we will later discuss how the Gaussian approximation can be extended to
deal with these situations.

Our code directly gives the χ2 as an analytic quadratic function of cosmological parameters, that
fully describes present information on ΛCDM cosmology. Our result in terms of best fit points and
1σ errors is

fit As h ns τ 100Ωbh2 ΩDMh2

WMAP3 0.80 ± 0.05 0.704 ± 0.033 0.935 ± 0.019 0.081± 0.030 2.24 ± 0.10 0.113± 0.010
Global 0.84 ± 0.04 0.729 ± 0.013 0.951 ± 0.012 0.121± 0.025 2.36 ± 0.07 0.117± 0.003

(3)

a standard deviation.
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subject to ‘degeneracies’: we will later discuss how the Gaussian approximation can be extended to
deal with these situations.
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Figure 3: Fit of cosmological data at 68, 90 and 99% C.L. The shaded areas show our global fit
without Lyman-α, and the dotted lines our WMAP3-only fit, such that this figure can be directly
compared with the analogous WMAP Science Team plots in fig. 10 of [7].
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Figure 2: Difference between our code and CAMB, at the standard-cosmology best-fit point for mν = 0
(red solid line) and for mν = 0.5 eV (blue dashed line). Our code does not employ any approximation
specific for standard cosmology. In both codes various parameters allow the user to increase the
accuracy; this plot holds for the choice employed in the present paper. The dotted line shows the 1σ
accuracy obtained by WMAP3 results (binned data), indicating that we have a good enough accuracy
(as confirmed by other tests). A similar %-level accuracy is found for the TE and EE CMB spectra,
that presently are measured with much larger uncertainties than the TT spectrum.

while FORTRAN can only do numerical computations, Mathematica does not have this limitation and
allows to do analytically all parts of the computations that can be done analytically. This includes
the dependence of cosmological observables, e.g. on the spectral index, and all statistical issues that
nowadays are the most time-consuming aspect of cosmological analyses. Our approach is based on
the powerful old-fashioned Gaussian techniques, as we now briefly describe.

3.1 Statistics

Cosmological data have become so accurate and rich that debates about Bayesian priors versus fre-
quentistic constructions are getting numerically irrelevant: all different techniques converge towards
their common gaussian limit. This is clear e.g. from figures 10 of the WMAP analysis [7]: within
good approximation all allowed regions identified by their Monte Carlo Markov Chain (MCMC) tech-
nique are ellipses (with sizes that have the Gaussian dependence on the confidence level), as they
must be in Gaussian approximation. This means that the usual χ2, a single quadratic function of
the various cosmological parameters, approximatively encodes all present information on standard
cosmology and that the dependence on the N stnd

p parameters of standard cosmology (here chosen
to be the usual As, ns,ΩDM,Ωb, Yp, h, τ with Ωtot = 1, defined as in [7]; As is normalized at the
pivot point k = 0.002/Mpc) is accurately enough described by a first order Taylor expansion of each
observable (the various CTT

" , CTE
" , CEE

" , the power spectra, the luminosity distances of supernovæ,
...) around any point close enough to the best-fit point. We will soon check explicitly that sampling
N stnd

p + 1<∼ 10 points is enough to study standard cosmology.4 For comparison, MCMC techniques

4We do not improve the accuracy by making a second-order Taylor expansion. This can be done by probing
N stnd

p (N stnd
p + 1)/2 <

∼ 50 more points only, but would complicate statistical issues, preventing e.g. analytical marginal-
izations of the likelihood over nuisance parameters.

Furthermore, we checked that using two-sided derivatives or recomputing observables with the public CAMB code [8]
affects the results of the global standard fit, eq. (3), in a minor way: best-fit values typically shift by about a third of
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supernova data.

In §4.2 and subsequent sections, we consider two recently published high-z supernovae datasets

in combination with the WMAP CMB data, 157 supernova in the “Gold Sample” as described in

Riess et al. (2004) with 0.015 < z < 1.6 based on a combination of ground-based data and the

GOODS ACS Treasury program using the Hubble Space Telescope (HST) and the second sample,

115 supernova in the range 0.015 < z < 1 from the Supernova Legacy Survey (SNLS) (Astier et al.

2005) .

Measurements of the apparent magnitude, m, and inferred absolute magnitude, M0, of each

SN has been used to derive the distance modulus µobs = m−M0, from which a luminosity distance

is inferred, µobs = 5 log[dL(z)/Mpc] + 25. The luminosity distance predicted from theory, µth, is

compared to observations using a χ2 analysis summing over the SN sample.

χ2 =
∑

i

(µobs,i(zi) − µth(zi,M0))2

σ2
obs,i

(8)

where the absolute magnitude, M0, is a “nuisance parameter”, analytically marginalized over in

the likelihood analysis (Lewis & Bridle 2002), and σobs contains systematic errors related to the

light curve stretch factor, K-correction, extinction and the intrinsic redshift dispersion due to SNe

peculiar velocities (assumed 400 and 300 km s−1 for HST/GOODS and SNLS data sets respectively).

4.2. Joint Constraints on ΛCDM Model Parameters

Table 5: ΛCDM Model: Joint Likelihoods
WMAP WMAP WMAP+ACBAR WMAP +

Only +CBI+VSA +BOOMERanG 2dFGRS

Parameter

100Ωbh2 2.233+0.072
−0.091 2.203+0.072

−0.090 2.228+0.066
−0.082 2.223+0.066

−0.083

Ωmh2 0.1268+0.0073
−0.0128 0.1238+0.0066

−0.0118 0.1271+0.0070
−0.0128 0.1262+0.0050

−0.0103

h 0.734+0.028
−0.038 0.738+0.028

−0.037 0.733+0.030
−0.038 0.732+0.018

−0.025

A 0.801+0.043
−0.054 0.798+0.047

−0.057 0.801+0.048
−0.056 0.799+0.042

−0.051

τ 0.088+0.028
−0.034 0.084+0.031

−0.038 0.084+0.027
−0.034 0.083+0.027

−0.031

ns 0.951+0.015
−0.019 0.945+0.015

−0.019 0.949+0.015
−0.019 0.948+0.014

−0.018

σ8 0.744+0.050
−0.060 0.722+0.044

−0.056 0.742+0.045
−0.057 0.737+0.033

−0.045

Ωm 0.238+0.027
−0.045 0.229+0.026

−0.042 0.239+0.025
−0.046 0.236+0.016

−0.029

In the previous section, we showed that extrapolations of the power-law ΛCDM fits to the

WMAP measurements to other astronomical data successfully passes a fairly stringent series of

cosmological tests. Motivated by this agreement, we combine the WMAP observations with other

CMB data sets and with other astronomical observations.
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Table 6: ΛCDM Model
WMAP+ WMAP+ WMAP+ WMAP + WMAP+

SDSS LRG SNLS SN Gold CFHTLS

Parameter

100Ωbh2 2.233+0.062
−0.086 2.242+0.062

−0.084 2.233+0.069
−0.088 2.227+0.065

−0.082 2.247+0.064
−0.082

Ωmh2 0.1329+0.0057
−0.0109 0.1337+0.0047

−0.0098 0.1295+0.0055
−0.0106 0.1349+0.0054

−0.0106 0.1410+0.0042
−0.0094

h 0.709+0.024
−0.032 0.709+0.016

−0.023 0.723+0.021
−0.030 0.701+0.020

−0.026 0.686+0.017
−0.024

A 0.813+0.042
−0.052 0.816+0.042

−0.049 0.808+0.044
−0.051 0.827+0.045

−0.053 0.852+0.036
−0.047

τ 0.079+0.029
−0.032 0.082+0.028

−0.033 0.085+0.028
−0.032 0.079+0.028

−0.034 0.088+0.021
−0.031

ns 0.948+0.015
−0.018 0.951+0.014

−0.018 0.950+0.015
−0.019 0.946+0.015

−0.019 0.950+0.015
−0.019

σ8 0.772+0.036
−0.048 0.781+0.032

−0.045 0.758+0.038
−0.052 0.784+0.035

−0.049 0.826+0.023
−0.035

Ωm 0.266+0.025
−0.040 0.267+0.017

−0.029 0.249+0.023
−0.034 0.276+0.022

−0.036 0.301+0.018
−0.031

Table 5 and 6 show that adding external data sets has little effect on several parameters: Ωbh2,

ns and τ . However, the various combinations do reduce the uncertainties on Ωm and the amplitude

of fluctuations. The data sets used in Table 5 favor smaller values of the matter density, higher

Hubble constant values, and lower values of σ8. The data sets used in Table 6 favor higher values

of Ωm, lower Hubble constants and higher values of σ8. The lensing data set is most discrepant and

it most strongly pulls the combined results towards higher amplitudes and higher Ωm (see Figure

7 and 9). The overall effect of combining the data sets is shown in Figure 10.

The best fits for the data combinations shown Table 6 differ by about 1σ from the best fits

for the data combinations shown in Table 5 for their predictions for the total matter density, Ωmh2

(See Tables 5 and 6 and Figure 9). More accurate measurements of the third peak will help resolve

these discrepancies.

The differences between the two sets of data may be due to statistical fluctuations. For example,

the SDSS main galaxy sample power spectrum differs from the power spectrum measured from the

2dfGRS: this leads to a lower value for the Hubble constant for WMAP+SDSS data combination,

h = 0.709+0.024
−0.032, than for WMAP+2dFGRS, h = 0.732+0.018

−0.025. Note that while the SDSS LRG

data parameters values are close to those from the main SDSS catalog, they are independent

determinations with mostly different systematics.

The lensing measurements are sensitive to amplitude of the local potential fluctuations, which

scale roughly as σ8Ω0.6
m , so that lensing parameter constraints are nearly orthogonal to the CMB

degeneracies (Tereno et al. 2005). The CFHTLS lensing data best fit value for σ8Ω0.6
m is 1 − 2σ

higher than the best fit three year WMAP value. As a result, the combination of CFHT and

WMAP data favors a higher value of σ8 and Ωm and a lower value of H0 than WMAP data alone.

Appendix A shows that the amplitude of this discrepancy is somewhat sensitive to our choice of

priors. Because of the small error bars in the CFHT data set and the relatively small overlap region
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Figure 5: Fig. 5a): fit as function of the energy density in freely-streaming relativistic particles,
parametrized by the usual ‘number of neutrinos’ Nν . Fig. 5b): fit as function of the energy density
in extra interacting relativistic particles, with abundance parametrized by ∆Nν . We studied different
combinations of data-sets, as indicated by the legend.

determined by non-CMB data, and giving slightly different weight to them can significantly affect the
fit because different pieces of data prefer different values of Nν . In particular, the 2σ preference for
Nν > 3 is mainly due to the 2σ anomaly in the Lyman-α measurement of the power spectrum: fig. 5a
shows that omitting Lyman-α one recovers excellent agreement with the standard value Nν = 3. The
agreement with and between the up-to-date analyses performed by the WMAP Team [7] and by [18]
is imperfect; in particular the revised version of [18] claims a 3σ preference for Nν > 3.

4.3 Extra massless particles interacting among themselves

In the previous section we considered extra (massless) particles with negligible interactions, that
therefore freely move on cosmological scales. We now consider the opposite limit: extra (massless)
particles that interact among themselves with a mean free path smaller than relevant cosmological
scales, such that inhomogeneities in their energy density evolve in a different way. Concrete examples
are an elementary scalar with a quartic self-interaction or any particle with low compositeness scale,
obtained e.g. if some extra QCD-like gauge group becomes strongly coupled at an energy much lower
than the QCD scale. In the tight coupling limit this system is described by a fluid: its density and
velocity perturbations δ and v obey the standard fluid equations (in the conformal Newtonian gauge
and in linear approximation):

δ̇ = −4Φ̇− 4
3
kv, v̇ = kΨ +

kδ

4
(10)

where a dot denotes derivative with respect to conformal time, k is the wavenumber, Φ and Ψ are
the scalar perturbations in the metric (in the notations of [31]).

Fig. 5b shows the constraint on the density of the extra particles, that we parameterize in terms
of the usual ‘equivalent number of neutrinos’ ∆Nν ≥ 0: the global fit gives

∆Nν = 0± 1.3. (11)
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Figure 5: Fig. 5a): fit as function of the energy density in freely-streaming relativistic particles,
parametrized by the usual ‘number of neutrinos’ Nν . Fig. 5b): fit as function of the energy density
in extra interacting relativistic particles, with abundance parametrized by ∆Nν . We studied different
combinations of data-sets, as indicated by the legend.

determined by non-CMB data, and giving slightly different weight to them can significantly affect the
fit because different pieces of data prefer different values of Nν . In particular, the 2σ preference for
Nν > 3 is mainly due to the 2σ anomaly in the Lyman-α measurement of the power spectrum: fig. 5a
shows that omitting Lyman-α one recovers excellent agreement with the standard value Nν = 3. The
agreement with and between the up-to-date analyses performed by the WMAP Team [7] and by [18]
is imperfect; in particular the revised version of [18] claims a 3σ preference for Nν > 3.

4.3 Extra massless particles interacting among themselves

In the previous section we considered extra (massless) particles with negligible interactions, that
therefore freely move on cosmological scales. We now consider the opposite limit: extra (massless)
particles that interact among themselves with a mean free path smaller than relevant cosmological
scales, such that inhomogeneities in their energy density evolve in a different way. Concrete examples
are an elementary scalar with a quartic self-interaction or any particle with low compositeness scale,
obtained e.g. if some extra QCD-like gauge group becomes strongly coupled at an energy much lower
than the QCD scale. In the tight coupling limit this system is described by a fluid: its density and
velocity perturbations δ and v obey the standard fluid equations (in the conformal Newtonian gauge
and in linear approximation):

δ̇ = −4Φ̇− 4
3
kv, v̇ = kΨ +

kδ

4
(10)

where a dot denotes derivative with respect to conformal time, k is the wavenumber, Φ and Ψ are
the scalar perturbations in the metric (in the notations of [31]).

Fig. 5b shows the constraint on the density of the extra particles, that we parameterize in terms
of the usual ‘equivalent number of neutrinos’ ∆Nν ≥ 0: the global fit gives

∆Nν = 0± 1.3. (11)
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Figure 5: Fig. 5a): fit as function of the energy density in freely-streaming relativistic particles,
parametrized by the usual ‘number of neutrinos’ Nν . Fig. 5b): fit as function of the energy density
in extra interacting relativistic particles, with abundance parametrized by ∆Nν . We studied different
combinations of data-sets, as indicated by the legend.

determined by non-CMB data, and giving slightly different weight to them can significantly affect the
fit because different pieces of data prefer different values of Nν . In particular, the 2σ preference for
Nν > 3 is mainly due to the 2σ anomaly in the Lyman-α measurement of the power spectrum: fig. 5a
shows that omitting Lyman-α one recovers excellent agreement with the standard value Nν = 3. The
agreement with and between the up-to-date analyses performed by the WMAP Team [7] and by [18]
is imperfect; in particular the revised version of [18] claims a 3σ preference for Nν > 3.

4.3 Extra massless particles interacting among themselves

In the previous section we considered extra (massless) particles with negligible interactions, that
therefore freely move on cosmological scales. We now consider the opposite limit: extra (massless)
particles that interact among themselves with a mean free path smaller than relevant cosmological
scales, such that inhomogeneities in their energy density evolve in a different way. Concrete examples
are an elementary scalar with a quartic self-interaction or any particle with low compositeness scale,
obtained e.g. if some extra QCD-like gauge group becomes strongly coupled at an energy much lower
than the QCD scale. In the tight coupling limit this system is described by a fluid: its density and
velocity perturbations δ and v obey the standard fluid equations (in the conformal Newtonian gauge
and in linear approximation):

δ̇ = −4Φ̇− 4
3
kv, v̇ = kΨ +

kδ

4
(10)

where a dot denotes derivative with respect to conformal time, k is the wavenumber, Φ and Ψ are
the scalar perturbations in the metric (in the notations of [31]).

Fig. 5b shows the constraint on the density of the extra particles, that we parameterize in terms
of the usual ‘equivalent number of neutrinos’ ∆Nν ≥ 0: the global fit gives

∆Nν = 0± 1.3. (11)
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Ṅ + i
qν

Eν

kµN = −Φ̇ − i
Eν

qν

kµΨ

metric

dark matter

baryons

Results
New  sticky  particles? ∆Nν

{

3.04

{

v̇x + i

4
kδx = −ikΨ

δ̇x + i
4

3
kvx = −4Φ̇ } extra

A relativistic fluid:

Contributes          
to the rel energy density.

δx, vx.

∆Nν · δx

Massless particles, interacting among 
themselves (i.e.non freely streaming)
at the time of CMB formation.

e.g. a scalar       withϕ λϕ4

e.g. scalar + fermion with
e.g. fermions with

λ′ϕν2

s

〈N̄N〉 ...



New  sticky  particles?
Results

∆Nν

{

3.04

{

0 2 4 6 8 10

Number density,  N!

-5

-2.5

0

2.5

5

7.5

10

"
#
2

Freely streaming massless particles all data

WMAP3 only

all but Ly!

all but LSS

all but SN

all but H0

0 1 2 3 4 5

Number density! N"

0

2

4

6

8

10

12

!
#
2

Extra interacting massless particles

Figure 5: Fig. 5a): fit as function of the energy density in freely-streaming relativistic particles,
parametrized by the usual ‘number of neutrinos’ Nν . Fig. 5b): fit as function of the energy density
in extra interacting relativistic particles, with abundance parametrized by ∆Nν . We studied different
combinations of data-sets, as indicated by the legend.

determined by non-CMB data, and giving slightly different weight to them can significantly affect the
fit because different pieces of data prefer different values of Nν . In particular, the 2σ preference for
Nν > 3 is mainly due to the 2σ anomaly in the Lyman-α measurement of the power spectrum: fig. 5a
shows that omitting Lyman-α one recovers excellent agreement with the standard value Nν = 3. The
agreement with and between the up-to-date analyses performed by the WMAP Team [7] and by [18]
is imperfect; in particular the revised version of [18] claims a 3σ preference for Nν > 3.

4.3 Extra massless particles interacting among themselves

In the previous section we considered extra (massless) particles with negligible interactions, that
therefore freely move on cosmological scales. We now consider the opposite limit: extra (massless)
particles that interact among themselves with a mean free path smaller than relevant cosmological
scales, such that inhomogeneities in their energy density evolve in a different way. Concrete examples
are an elementary scalar with a quartic self-interaction or any particle with low compositeness scale,
obtained e.g. if some extra QCD-like gauge group becomes strongly coupled at an energy much lower
than the QCD scale. In the tight coupling limit this system is described by a fluid: its density and
velocity perturbations δ and v obey the standard fluid equations (in the conformal Newtonian gauge
and in linear approximation):

δ̇ = −4Φ̇− 4
3
kv, v̇ = kΨ +

kδ

4
(10)

where a dot denotes derivative with respect to conformal time, k is the wavenumber, Φ and Ψ are
the scalar perturbations in the metric (in the notations of [31]).

Fig. 5b shows the constraint on the density of the extra particles, that we parameterize in terms
of the usual ‘equivalent number of neutrinos’ ∆Nν ≥ 0: the global fit gives

∆Nν = 0± 1.3. (11)
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Cosmology constrains extra sterile neutrinos 
(freely-streaming or interacting): they better be few and light.
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Sticky neutrinos don’t stream out of gravitational wells: contribute power to CMB.
For massless neutrinos the effect on P(k) is minor.

[Bell, Pierpaoli, Sigurdson, PRD73 (2006)]
[Hannestad, JCAP 2005]
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Figure 8: Number of standard deviations, defined as (χ2 − χ2
0)

1/2 (where χ2
0 is the best ΛCDM fit

with massless neutrinos) at which cosmological data disfavor a fluid of 3 neutrinos interacting with
a scalar assuming massive neutrinos and massless scalar (fig. 8a) or massless neutrinos and massive
scalar (fig. 8b). The different lines correspond to different data-sets: global fit (continuous black line),
Lyman-α data dropped (dot-dashed green line), WMAP3 only (dashed red line).

freely streams. In standard cosmology R = 0 and Nν = Nnormal
ν = 3.04. Fig. 7 shows how a global

fit of present data determines these two parameters. The ‘all interacting’ case (R = 1) is disfavored
at 4σ at least (i.e. minχ2(Nν , R = 1) − χ2(Nν = 3, R = 0)>∼ 16) and at 3σ if Lyman-α data are
dropped. As in the case of massive neutrinos, Lyman-α data make the constraint slightly stronger
than the sensitivity. Two previous analyses claimed different results: our constraints are somewhat
stronger than in [37] (possibly because we use the most recent data set) and weaker than in [36].

4.7 Massive neutrinos interacting with a massless boson

We now explore how the situation changes if neutrinos have a non vanishing mass mν . We focus
on the most interesting limiting case: R = 0 i.e. we now assume that all neutrinos are involved
in the interaction. This is interesting because it means that the cosmological bound on neutrino
masses no longer applies, because when T <∼mν all neutrinos annihilate or decay into massless φ
particles. Scenarios of this kind have been proposed for a number of reasons [38, 39, 40]. We again
assume that neutrinos initially have the standard abundance, and that bosons initially have the
minimal abundance, Nφ = 1 (one real scalar). After that all neutrinos annihilate into φ, they acquire
a relativistic energy density corresponding to an equivalent number of neutrinos Nν(T <∼mν) =
4/7(25/4)4/3 ∼ 6.6.

Fig. 8a shows how much this non-standard cosmology is disfavored as a function of mν (standard
cosmology is not recovered for any value of mν). For mν # eV the result is similar to the case
mν = 0, already discussed in section 4.6: this scenario is disfavored at about 4σ by the global fit. As
already noticed in [37], the scenario becomes less disfavored for mν >∼ eV (beta decay data demand
mν <∼ 2 eV [1]). We find that WMAP3 data (dashed lines in fig.s 8) are more constraining than the
WMAP1 data analyzed in [37].

We do not consider intermediate scenarios where only one or two massive neutrinos interact with
the scalar: both the constraint on neutrino masses and on their free-streaming applies, but in a
milder form [37].
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Cosmology seems to suggest 5 neutrinos (2 extra);
but Ly-alpha are mainly driving the suggestion.

Conclusions & Messages

Cosmology gives dominant bound on            ;
the bound tightens combining relatively less safe datasets.

Cosmology disfavors at various degrees neutrino interactions 
and other light particles: neutrinos ought to free-stream.

The massive extra neutrino of LSND was already strongly disfavored.

Future observations will be powerful probes.

∑
mνi

∑
mνi

< 0.40 eV (global fit,
99.9% C.L.)

Cosmology is a sensitive probe of neutrinos and possible new 
light particles; let’s put at work the formalism (and a new code) 
for cosmological perturbation to extract the most from the full 
cosmo dataset.
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Lyman-alpha forest
Distant quasar light, redshifted and 
absorbed at Ly-    frequency
by intervening matter, allows to 
reconstruct matter distribution 
along the line of sight.
But: systematics and uncertainties

In our analysis of flux statistics, we are interested in the
mean flux hFi and the fluctuations about the mean
!F ð"Þ # Fð"Þ=hFi$ 1. We use F(") to denote the transmit-
ted flux, i.e., the ratio of the flux at a given wavelength " to
the unabsorbed quasar continuum flux at ". In order to find
F("), and hence hFi, it is necessary to make an estimate of
the unabsorbed continuum level. The quantity !F(") is much
less sensitive to the exact assumed continuum level, as hFi
has already been divided out. In the present paper we do not
attempt to make accurate determinations of hFi from our
data. Instead, we use hFi results from the literature and
show how our results (for example, for the amplitude of the
matter power spectrum) would change for given future
determinations of hFi.

In order to calculate !F("), we have two choices. The first
is to estimate a continuum level by fitting a line that passes
through apparently unabsorbed regions of the spectrum.
This has already been done in a semiautomated way for the
HIRES data as described in x 2.1 (see also Burles & Tytler
1998). For the LRIS data, which have much lower spectral
resolution, our !F(") results are more likely to be sensitive to
the continuum-fitting technique used. We therefore com-
pare two techniques applied to the LRIS data. The first is
the automated technique described in CWPHK. This
involves fitting a third-order polynomial through the data
points in a given length of spectrum, rejecting points that lie
2 # below the fit line, and iterating until convergence is
reached. We implement this procedure using 100 Å fitting
segments.

The second method for estimating !F(") is to calculate the
mean flux level of the spectrum directly, rather than first fit-
ting the continuum to scale unabsorbed flux to F ¼ 1. The
mean level must be estimated from a region much larger
than the length scales for which we are interested in measur-
ing variations in !F("). This can be done by either fitting a

low-order polynomial to the spectrum itself (Hui et al. 2001)
or smoothing the spectrum with a large radius filter. We do
the latter, using a 50 Å Gaussian filter. The value of !F(") is
then given by Cð"Þ=CSð"Þ $ 1, where C(") is the number of
counts in the spectrum at a wavelength " and CS(") is the
smoothed number of counts.

Figure 2 illustrates these two methods of determining
!F("). Figure 2a shows the LRIS spectrum of the z ¼ 3:16
quasar Q107+1055, along with the fitted continuum (upper
smooth curve) and the 50 Å smoothed spectrum (lower
smooth curve). Figure 2b compares !F(") estimated using the
fitted continuum and using the smoothed spectrum. The
two methods yield nearly indistinguishable results, with
small differences appearing in regions where the spectrum is
apparently close to the unabsorbed continuum. Figure 2c
shows !F(") from the (continuum-fitted) HIRES spectrum
of Q107+1055. Figure 2d blows up the central 150 Å of the
spectrum, superposing the two LRIS !F("), the HIRES
!F("), and the HIRES !F(") smoothed to the spatial resolu-
tion of the LRIS data. The smoothed HIRES spectrum
matches the LRIS spectrum almost perfectly, providing fur-
ther evidence of the robustness of the !F(") determination.
In x 3.3 we compare the HIRES and LRIS flux power spec-
tra for the four quasars common to both samples. We also
show that the two methods of determining !F(") from the
LRIS spectra yield similar power spectrum results. We
adopt the smoothed spectrum method as our standard,
since it does not involve splitting a spectrum into discrete
segments and is simpler to implement in a robust manner.

As in CWPHK, we scale the individual pixel widths in the
spectra to the size they would have at the mean redshift of
the sample in question. In the present work we do this
assuming that the evolution of H(z) follows that in an
Einstein–de Sitter (EdS) universe, which should be a good
approximation at these high redshifts (see also M00). We

Fig. 2.—Determination of !F("), for the quasar Q1017+1055. (a) LRIS spectrum (wiggly line), the continuumfitted over 100 Å regions (upper smooth curve),
and the spectrum smoothed with a 50 Å Gaussian (lower smooth curve). (b) Fluctuations !F(") derived using the continuum-fitted spectrum and the smoothed
spectrum. The continuum-fitted curve is slightly higher where the two are distinguishable. (c) Fluctuations !F(") from the HIRES spectrum of Q1077+1055.
(d ) Zoom of the central 150 Å showing the two variations of the LRIS spectrum, the HIRES spectrum, and the HIRES spectrum smoothed to the resolution
of the LRIS data (gray curve).
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- very complicated measurement and analysis (from flux to matter
  spectra), different groups disagree (even on same data)
- non linearities
- HMD simulations don’t include neutrinos

Skepticism on Lyman-    :α
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Comparing our code
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Fig. 10.— Joint two-dimensional marginalized contours (68%, and 95% confi-

dence levels) for various combination of parameters for WMAP only (solid lines) and

WMAP+2dFGRS+SDSS+ACBAR+BOOMERanG+CBI+VSA+SN(HST/GOODS)+SN(SNLS)

(filled red) for the power-law ΛCDM model.
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Figure 3: Fit of cosmological data at 68, 90 and 99% C.L. The shaded areas show our global fit
without Lyman-α, and the dotted lines our WMAP3-only fit, such that this figure can be directly
compared with the analogous WMAP Science Team plots in fig. 10 of [7].

can need one independent chain with ∼ 105 points every time one wants to analyze a (sub)set of
data [7].

The Gaussian approximation has no ‘statistical’ uncertainty due to finite MCMC sampling but it
introduces a ‘systematic’ uncertainty. This is small near the expansion point (chosen to be close to
the best-fit point) and grows when one goes far from it. At some point data become accurate enough
that the region singled out by them is small enough to make the Gaussian approximation a good one.
By construction, the Gaussian approximation reproduces the same best-fit point (small differences
between our and other analyses on common studies are due to different data-sets, different code, etc.)
and the confidence regions with small enough confidence levels, and fails at larger confidence levels.
In practice, we care about 90%, 99% and maybe 99.9% confidence levels. Fig. 3 is our crucial test
and it shows that the contours corresponding to such confidence levels are reproduced in an fairly
accurate way when comparing with the WMAP Science Team analysis. Notice that the Gaussian
approximation needs not to be and is not accurate enough to analyze every single piece of data,
but it allows to correctly fit the full data-set. Some non-standard cosmological parameters are still
subject to ‘degeneracies’: we will later discuss how the Gaussian approximation can be extended to
deal with these situations.

Our code directly gives the χ2 as an analytic quadratic function of cosmological parameters, that
fully describes present information on ΛCDM cosmology. Our result in terms of best fit points and
1σ errors is

fit As h ns τ 100Ωbh2 ΩDMh2

WMAP3 0.80 ± 0.05 0.704 ± 0.033 0.935 ± 0.019 0.081± 0.030 2.24 ± 0.10 0.113± 0.010
Global 0.84 ± 0.04 0.729 ± 0.013 0.951 ± 0.012 0.121± 0.025 2.36 ± 0.07 0.117± 0.003

(3)

a standard deviation.
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that the region singled out by them is small enough to make the Gaussian approximation a good one.
By construction, the Gaussian approximation reproduces the same best-fit point (small differences
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fully describes present information on ΛCDM cosmology. Our result in terms of best fit points and
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Figure 2: Difference between our code and CAMB, at the standard-cosmology best-fit point for mν = 0
(red solid line) and for mν = 0.5 eV (blue dashed line). Our code does not employ any approximation
specific for standard cosmology. In both codes various parameters allow the user to increase the
accuracy; this plot holds for the choice employed in the present paper. The dotted line shows the 1σ
accuracy obtained by WMAP3 results (binned data), indicating that we have a good enough accuracy
(as confirmed by other tests). A similar %-level accuracy is found for the TE and EE CMB spectra,
that presently are measured with much larger uncertainties than the TT spectrum.

while FORTRAN can only do numerical computations, Mathematica does not have this limitation and
allows to do analytically all parts of the computations that can be done analytically. This includes
the dependence of cosmological observables, e.g. on the spectral index, and all statistical issues that
nowadays are the most time-consuming aspect of cosmological analyses. Our approach is based on
the powerful old-fashioned Gaussian techniques, as we now briefly describe.

3.1 Statistics

Cosmological data have become so accurate and rich that debates about Bayesian priors versus fre-
quentistic constructions are getting numerically irrelevant: all different techniques converge towards
their common gaussian limit. This is clear e.g. from figures 10 of the WMAP analysis [7]: within
good approximation all allowed regions identified by their Monte Carlo Markov Chain (MCMC) tech-
nique are ellipses (with sizes that have the Gaussian dependence on the confidence level), as they
must be in Gaussian approximation. This means that the usual χ2, a single quadratic function of
the various cosmological parameters, approximatively encodes all present information on standard
cosmology and that the dependence on the N stnd

p parameters of standard cosmology (here chosen
to be the usual As, ns,ΩDM,Ωb, Yp, h, τ with Ωtot = 1, defined as in [7]; As is normalized at the
pivot point k = 0.002/Mpc) is accurately enough described by a first order Taylor expansion of each
observable (the various CTT

" , CTE
" , CEE

" , the power spectra, the luminosity distances of supernovæ,
...) around any point close enough to the best-fit point. We will soon check explicitly that sampling
N stnd

p + 1<∼ 10 points is enough to study standard cosmology.4 For comparison, MCMC techniques

4We do not improve the accuracy by making a second-order Taylor expansion. This can be done by probing
N stnd

p (N stnd
p + 1)/2 <

∼ 50 more points only, but would complicate statistical issues, preventing e.g. analytical marginal-
izations of the likelihood over nuisance parameters.

Furthermore, we checked that using two-sided derivatives or recomputing observables with the public CAMB code [8]
affects the results of the global standard fit, eq. (3), in a minor way: best-fit values typically shift by about a third of
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Figure 2: Difference between our code and CAMB, at the standard-cosmology best-fit point for mν = 0
(red solid line) and for mν = 0.5 eV (blue dashed line). Our code does not employ any approximation
specific for standard cosmology. In both codes various parameters allow the user to increase the
accuracy; this plot holds for the choice employed in the present paper. The dotted line shows the 1σ
accuracy obtained by WMAP3 results (binned data), indicating that we have a good enough accuracy
(as confirmed by other tests). A similar %-level accuracy is found for the TE and EE CMB spectra,
that presently are measured with much larger uncertainties than the TT spectrum.
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allows to do analytically all parts of the computations that can be done analytically. This includes
the dependence of cosmological observables, e.g. on the spectral index, and all statistical issues that
nowadays are the most time-consuming aspect of cosmological analyses. Our approach is based on
the powerful old-fashioned Gaussian techniques, as we now briefly describe.
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Cosmological data have become so accurate and rich that debates about Bayesian priors versus fre-
quentistic constructions are getting numerically irrelevant: all different techniques converge towards
their common gaussian limit. This is clear e.g. from figures 10 of the WMAP analysis [7]: within
good approximation all allowed regions identified by their Monte Carlo Markov Chain (MCMC) tech-
nique are ellipses (with sizes that have the Gaussian dependence on the confidence level), as they
must be in Gaussian approximation. This means that the usual χ2, a single quadratic function of
the various cosmological parameters, approximatively encodes all present information on standard
cosmology and that the dependence on the N stnd

p parameters of standard cosmology (here chosen
to be the usual As, ns,ΩDM,Ωb, Yp, h, τ with Ωtot = 1, defined as in [7]; As is normalized at the
pivot point k = 0.002/Mpc) is accurately enough described by a first order Taylor expansion of each
observable (the various CTT

" , CTE
" , CEE

" , the power spectra, the luminosity distances of supernovæ,
...) around any point close enough to the best-fit point. We will soon check explicitly that sampling
N stnd

p + 1<∼ 10 points is enough to study standard cosmology.4 For comparison, MCMC techniques

4We do not improve the accuracy by making a second-order Taylor expansion. This can be done by probing
N stnd

p (N stnd
p + 1)/2 <

∼ 50 more points only, but would complicate statistical issues, preventing e.g. analytical marginal-
izations of the likelihood over nuisance parameters.

Furthermore, we checked that using two-sided derivatives or recomputing observables with the public CAMB code [8]
affects the results of the global standard fit, eq. (3), in a minor way: best-fit values typically shift by about a third of

5
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supernova data.

In §4.2 and subsequent sections, we consider two recently published high-z supernovae datasets

in combination with the WMAP CMB data, 157 supernova in the “Gold Sample” as described in

Riess et al. (2004) with 0.015 < z < 1.6 based on a combination of ground-based data and the

GOODS ACS Treasury program using the Hubble Space Telescope (HST) and the second sample,

115 supernova in the range 0.015 < z < 1 from the Supernova Legacy Survey (SNLS) (Astier et al.

2005) .

Measurements of the apparent magnitude, m, and inferred absolute magnitude, M0, of each

SN has been used to derive the distance modulus µobs = m−M0, from which a luminosity distance

is inferred, µobs = 5 log[dL(z)/Mpc] + 25. The luminosity distance predicted from theory, µth, is

compared to observations using a χ2 analysis summing over the SN sample.

χ2 =
∑

i

(µobs,i(zi) − µth(zi,M0))2

σ2
obs,i

(8)

where the absolute magnitude, M0, is a “nuisance parameter”, analytically marginalized over in

the likelihood analysis (Lewis & Bridle 2002), and σobs contains systematic errors related to the

light curve stretch factor, K-correction, extinction and the intrinsic redshift dispersion due to SNe

peculiar velocities (assumed 400 and 300 km s−1 for HST/GOODS and SNLS data sets respectively).

4.2. Joint Constraints on ΛCDM Model Parameters

Table 5: ΛCDM Model: Joint Likelihoods
WMAP WMAP WMAP+ACBAR WMAP +

Only +CBI+VSA +BOOMERanG 2dFGRS

Parameter

100Ωbh2 2.233+0.072
−0.091 2.203+0.072

−0.090 2.228+0.066
−0.082 2.223+0.066

−0.083

Ωmh2 0.1268+0.0073
−0.0128 0.1238+0.0066

−0.0118 0.1271+0.0070
−0.0128 0.1262+0.0050

−0.0103

h 0.734+0.028
−0.038 0.738+0.028

−0.037 0.733+0.030
−0.038 0.732+0.018

−0.025

A 0.801+0.043
−0.054 0.798+0.047

−0.057 0.801+0.048
−0.056 0.799+0.042

−0.051

τ 0.088+0.028
−0.034 0.084+0.031

−0.038 0.084+0.027
−0.034 0.083+0.027

−0.031

ns 0.951+0.015
−0.019 0.945+0.015

−0.019 0.949+0.015
−0.019 0.948+0.014

−0.018

σ8 0.744+0.050
−0.060 0.722+0.044

−0.056 0.742+0.045
−0.057 0.737+0.033

−0.045

Ωm 0.238+0.027
−0.045 0.229+0.026

−0.042 0.239+0.025
−0.046 0.236+0.016

−0.029

In the previous section, we showed that extrapolations of the power-law ΛCDM fits to the

WMAP measurements to other astronomical data successfully passes a fairly stringent series of

cosmological tests. Motivated by this agreement, we combine the WMAP observations with other

CMB data sets and with other astronomical observations.
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Table 6: ΛCDM Model
WMAP+ WMAP+ WMAP+ WMAP + WMAP+

SDSS LRG SNLS SN Gold CFHTLS

Parameter

100Ωbh2 2.233+0.062
−0.086 2.242+0.062

−0.084 2.233+0.069
−0.088 2.227+0.065

−0.082 2.247+0.064
−0.082

Ωmh2 0.1329+0.0057
−0.0109 0.1337+0.0047

−0.0098 0.1295+0.0055
−0.0106 0.1349+0.0054

−0.0106 0.1410+0.0042
−0.0094

h 0.709+0.024
−0.032 0.709+0.016

−0.023 0.723+0.021
−0.030 0.701+0.020

−0.026 0.686+0.017
−0.024

A 0.813+0.042
−0.052 0.816+0.042

−0.049 0.808+0.044
−0.051 0.827+0.045

−0.053 0.852+0.036
−0.047

τ 0.079+0.029
−0.032 0.082+0.028

−0.033 0.085+0.028
−0.032 0.079+0.028

−0.034 0.088+0.021
−0.031

ns 0.948+0.015
−0.018 0.951+0.014

−0.018 0.950+0.015
−0.019 0.946+0.015

−0.019 0.950+0.015
−0.019

σ8 0.772+0.036
−0.048 0.781+0.032

−0.045 0.758+0.038
−0.052 0.784+0.035

−0.049 0.826+0.023
−0.035

Ωm 0.266+0.025
−0.040 0.267+0.017

−0.029 0.249+0.023
−0.034 0.276+0.022

−0.036 0.301+0.018
−0.031

Table 5 and 6 show that adding external data sets has little effect on several parameters: Ωbh2,

ns and τ . However, the various combinations do reduce the uncertainties on Ωm and the amplitude

of fluctuations. The data sets used in Table 5 favor smaller values of the matter density, higher

Hubble constant values, and lower values of σ8. The data sets used in Table 6 favor higher values

of Ωm, lower Hubble constants and higher values of σ8. The lensing data set is most discrepant and

it most strongly pulls the combined results towards higher amplitudes and higher Ωm (see Figure

7 and 9). The overall effect of combining the data sets is shown in Figure 10.

The best fits for the data combinations shown Table 6 differ by about 1σ from the best fits

for the data combinations shown in Table 5 for their predictions for the total matter density, Ωmh2

(See Tables 5 and 6 and Figure 9). More accurate measurements of the third peak will help resolve

these discrepancies.

The differences between the two sets of data may be due to statistical fluctuations. For example,

the SDSS main galaxy sample power spectrum differs from the power spectrum measured from the

2dfGRS: this leads to a lower value for the Hubble constant for WMAP+SDSS data combination,

h = 0.709+0.024
−0.032, than for WMAP+2dFGRS, h = 0.732+0.018

−0.025. Note that while the SDSS LRG

data parameters values are close to those from the main SDSS catalog, they are independent

determinations with mostly different systematics.

The lensing measurements are sensitive to amplitude of the local potential fluctuations, which

scale roughly as σ8Ω0.6
m , so that lensing parameter constraints are nearly orthogonal to the CMB

degeneracies (Tereno et al. 2005). The CFHTLS lensing data best fit value for σ8Ω0.6
m is 1 − 2σ

higher than the best fit three year WMAP value. As a result, the combination of CFHT and

WMAP data favors a higher value of σ8 and Ωm and a lower value of H0 than WMAP data alone.

Appendix A shows that the amplitude of this discrepancy is somewhat sensitive to our choice of

priors. Because of the small error bars in the CFHT data set and the relatively small overlap region
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Neutrino Properties
NODE=S066

SUM OF THE NEUTRINO MASSES, mtotSUM OF THE NEUTRINO MASSES, mtotSUM OF THE NEUTRINO MASSES, mtotSUM OF THE NEUTRINO MASSES, mtot NODE=S066MNS

(Defined in the above note), of effectively stable neutrinos (i.e., those NODE=S066MNS
with mean lives greater than or equal to the age of the universe). These
papers assumed Dirac neutrinos. When necessary, we have generalized
the results reported so they apply to mtot. For other limits, see SZA-
LAY 76, VYSOTSKY 77, BERNSTEIN 81, FREESE 84, SCHRAMM 84,
and COWSIK 85.

NODE=S066MNSVALUE (eV) CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, fits, limits, etc. • • •

YOUR DATA < 0.24 95 54 CIRELLI 06 COSM
< 0.62 95 55 HANNESTAD 06 COSM
< 0.52 95 56 KRISTIANSEN 06 COSM
< 0.17 95 54 SELJAK 06 COSM
< 2.0 95 57 ICHIKAWA 05 COSM
< 0.75 58 BARGER 04 COSM
< 1.0 59 CROTTY 04 COSM
< 0.7 60 SPERGEL 03 COSM WMAP
< 0.9 61 LEWIS 02 COSM
< 4.2 62 WANG 02 COSM CMB
< 2.7 63 FUKUGITA 00 COSM
< 5.5 64 CROFT 99 ASTR Ly α power spec
<180 SZALAY 74 COSM
<132 COWSIK 72 COSM
<280 MARX 72 COSM
<400 GERSHTEIN 66 COSM

54Constrains the total mass of neutrinos from recent CMB, large scale structure, and SN1a NODE=S066MNS;LINKAGE=CI
data.

55Constrains the total mass of neutrinos from recent CMB and large scale structure data. NODE=S066MNS;LINKAGE=HA
56Constrains the total mass of neutrinos from recent CMB, large scale structure, SN1a, NODE=S066MNS;LINKAGE=KR

HST, BBN, and baryon acoustic oscillation data. The limit relaxes to 1.66 when WMAP
data alone is used.

57Constrains the total mass of neutrinos from the CMB experiments alone, assuming ΛCDM NODE=S066MNS;LINKAGE=IC
Universe. FUKUGITA 06 show that this result is unchanged by the 3-year WMAP data.

58Constrains the total mass of neutrinos from the power spectrum of fluctuations derived NODE=S066MNS;LINKAGE=BA
from the Sloan Digital Sky Survey and the 2dF galaxy redshift survey, WMAP and 27
other CMB experiments and measurements by the HST Key project.

59Constrains the total mass of neutrinos from the power spectrum of fluctuations derived NODE=S066MNS;LINKAGE=CR
from the Sloan Digital Sky Survey, the 2dF galaxy redshift survey, WMAP and ACBAR.
The limit is strengthened to 0.6 eV when measurements by the HST Key project and
supernovae data are included.

60Constrains the fractional contribution of neutrinos to the total matter density in the NODE=S066MNS;LINKAGE=PG
Universe from WMAP data combined with other CMB measurements, the 2dfGRS data,
and Lyman α data. The limit does not noticeably change if the Lyman α data are not
used.

61 LEWIS 02 constrains the total mass of neutrinos from the power spectrum of fluctuations NODE=S066MNS;LINKAGE=LW
derived from the CMB, HST Key project, 2dF galaxy redshift survey, supernovae type Ia,
and BBN.

62WANG 02 constrains the total mass of neutrinos from the power spectrum of fluctuations NODE=S066MNS;LINKAGE=WG
derived from the CMB and other cosmological data sets such as galaxy clustering and
the Lyman α forest.

63 FUKUGITA 00 is a limit on neutrino masses from structure formation. The constraint is NODE=S066MNS;LINKAGE=FK
based on the clustering scale σ8 and the COBE normalization and leads to a conservative
limit of 0.9 eV assuming 3 nearly degenerate neutrinos. The quoted limit is on the sum
of the light neutrino masses.

64CROFT 99 result based on the power spectrum of the Ly α forest. If Ωmatter < 0.5, NODE=S066MNS;LINKAGE=CF
the limit is improved to m

ν
< 2.4 (Ωmatter/0.17–1) eV.
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REFERENCES FOR Neutrino PropertiesREFERENCES FOR Neutrino PropertiesREFERENCES FOR Neutrino PropertiesREFERENCES FOR Neutrino Properties NODE=S066

YOUR PAPER REFID=51612CIRELLI 06 JCAP 0612 013 M. Cirelli et al.
REFID=51315FUKUGITA 06 PR D74 027302 M. Fukugita et al.
REFID=51611HANNESTAD 06 JCAP 0611 016 S. Hannestad, G. Raffelt
REFID=51602KRISTIANSEN 06 PR D74 123005 J. Kristiansen, O. Elgaroy, H. Eriksen
REFID=51613SELJAK 06 JCAP 0610 014 U. Seljak, A. Slosar, P. McDonald
REFID=50719ICHIKAWA 05 PR D71 043001 K. Ichikawa, M. Fukugita, M. Kawasaki (ICRR)
REFID=49978BARGER 04 PL B595 55 V. Barger, D. Marfatia, A. Tregre
REFID=50042CROTTY 04 PR D69 123007 P. Crotty, J. Lesgourgues, S. Pastor
REFID=49530SPERGEL 03 APJS 148 175 D.N. Spergel et al.
REFID=49075LEWIS 02 PR D66 103511 A. Lewis, S. Bridle
REFID=49163WANG 02 PR D65 123001 X. Wang, M. Tegmark, M. Zaldarriaga
REFID=47572FUKUGITA 00 PRL 84 1082 M. Fukugita, G.C. Liu, N. Sugiyama
REFID=47038CROFT 99 PRL 83 1092 R.A.C. Croft, W. Hu, R. Dave
REFID=10536COWSIK 85 PL 151B 62 R. Cowsik (TATA)
REFID=10530FREESE 84 NP B233 167 K. Freese, D.N. Schramm (CHIC, FNAL)
REFID=10533SCHRAMM 84 PL 141B 337 D.N. Schramm, G. Steigman (FNAL, BART)
REFID=10506BERNSTEIN 81 PL 101B 39 J. Bernstein, G. Feinberg (STEV, COLU)
REFID=10487VYSOTSKY 77 JETPL 26 188 M.I. Vysotsky, A.D. Dolgov, Y.B. Zeldovich (ITEP)

Translated from ZETFP 26 200.
REFID=10479SZALAY 76 AA 49 437 A.S. Szalay, G. Marx (EOTV)
REFID=10477SZALAY 74 APAH 35 8 A.S. Szalay, G. Marx (EOTV)
REFID=10475COWSIK 72 PRL 29 669 R. Cowsik, J. McClelland (UCB)
REFID=10476MARX 72 Nu Conf. Budapest G. Marx, A.S. Szalay (EOTV)
REFID=10473GERSHTEIN 66 JETPL 4 120 S.S. Gershtein, Y.B. Zeldovich (KIAM)

Translated from ZETFP 4 189.

Number of Neutrino Types
NODE=S007

The neutrinos referred to in this section are those of the Standard NODE=S007

SU(2)×U(1) Electroweak Model possibly extended to allow nonzero
neutrino masses. Light neutrinos are those with m < mZ /2. The
limits are on the number of neutrino mass eigenstates, including ν1,
ν2, and ν3.

Limits from Astrophysics and CosmologyLimits from Astrophysics and CosmologyLimits from Astrophysics and CosmologyLimits from Astrophysics and Cosmology NODE=S007215

Number of Light ν TypesNumber of Light ν TypesNumber of Light ν TypesNumber of Light ν Types NODE=S007N
(“light” means < about 1 MeV). See also OLIVE 81. For a review of limits based NODE=S007N
on Nucleosynthesis, Supernovae, and also on terrestial experiments, see DENEGRI 90.
Also see “Big-Bang Nucleosynthesis” in this Review.

NODE=S007NVALUE CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, fits, limits, etc. • • •

YOUR DATA 3 < N
ν

< 7 95 3 CIRELLI 06 COSM
2.7 < N

ν
< 4.6 95 4 HANNESTAD 06 COSM

3.6 < N
ν

< 7.4 95 3 SELJAK 06 COSM
< 4.4 5 CYBURT 05 COSM
< 3.3 6 BARGER 03C COSM
1.4 <N

ν
< 6.8 7 CROTTY 03 COSM

1.9 <N
ν

< 6.6 7 PIERPAOLI 03 COSM
2 < N

ν
< 4 LISI 99 BBN

< 4.3 OLIVE 99 BBN
< 4.9 COPI 97 Cosmology
< 3.6 HATA 97B High D/H quasar abs.

< 4.0 OLIVE 97 BBN; high 4He and 7Li
< 4.7 CARDALL 96B COSM High D/H quasar abs.

< 3.9 FIELDS 96 COSM BBN; high 4He and 7Li
< 4.5 KERNAN 96 COSM High D/H quasar abs.
< 3.6 OLIVE 95 BBN; ≥ 3 massless ν

< 3.3 WALKER 91 Cosmology
< 3.4 OLIVE 90 Cosmology
< 4 YANG 84 Cosmology
< 4 YANG 79 Cosmology
< 7 STEIGMAN 77 Cosmology

PEEBLES 71 Cosmology
<16 8 SHVARTSMAN69 Cosmology

HOYLE 64 Cosmology

3Constrains the number of neutrino types from recent CMB, large scale structure, and NODE=S007N;LINKAGE=CI
SN1a data.

4Constrains the number of neutrino types from recent CMB and large scale structure data. NODE=S007N;LINKAGE=HN
5Limit on the number of neutrino types based on 4He and D/H abundance assuming a NODE=S007N;LINKAGE=CB
baryon density fixed to the WMAP data. Limit relaxes to 4.6 if D/H is not used or to
5.8 if only D/H and the CMB are used. See also CYBURT 01 and CYBURT 03.

(from Particle Data Book 2008)
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On neutrino masses
present bounds future sensitivities

Legenda: the bound or measurement 
will fall somewhere in the colored box; 

“where it’ll fall exactly” depends on the author, 
the experiment considered, priors, the weather...
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FIG. 5: Response of the four reduced CMB observables to the variation of ων . The isolated points

show the values at ων = 0, which do not connect to the ων != 0 values smoothly.

for H2 and H3 to the variations of ωb, ωm and ns for the WMAP data using the analytic

expressions [15]. Our empirical derivatives for these quantities are consistent with their

analytic evaluation.

We draw the response of Oi against the variation of ων for the range ων = 0 to 0.04

in Figures. 5. Note that an increase in ων accompanies a decrease in ΩΛ as we keep

Ωtot = 1 and ωm = ωcdm + ωb fixed7. We see small glitches from ων = 0 to the neighbouring

point in Figures. 5 (b), (c) and (d). This is probably a numerical artefact caused by the

implementation of the massive neutrino subroutine in the CMBFAST code, and we ignore

these glitches since they are much smaller than the errors of the CMB data.

7 Which variables are to be used is merely a matter of the convention. We chose the ones with which the

effect of massive neutrinos is more clearly visible.
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Fig. 19.— Joint two-dimensional marginalized contours (68% and 95% confidence levels)

of (σ8,mν) for WMAP only (left panel), Model M7 in Table 3, and WMAP+SDSS

(right panel). By measuring the growth rate of structure from z = 1088 to z ! 0, these

observations constrain the contribution of non-relativistic neutrinos to the energy

density of the universe.

Degeneracies
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Fig. 18.— Constraints on a flat universe with quintessence-like dark energy and non-

relativistic neutrinos. The contours show the 2-d marginalized contours for the mass

of non-relativistic neutrinos, mν, and the dark energy equation of state, w, assumed

constant, based on the the CMB+2dFGRS+SDSS+supernova data sets. The figure

shows that with the combination of CMB+2dFGRS+SDSS+supernova data sets, there

is not a strong degeneracy between neutrino and dark energy properties. Even in this

more general model, we still have an interesting constraint on the neutrino mass and

equation of state:
∑

mν < 1.0 eV (95% CL) and w = −1.06+0.13
−0.10 (68% CL). This suggests

that the astronomical dark energy and neutrino limits are robust even when we start

to consider more baroque models.
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6

exhibits both the amplitude suppression and the phase
shift effects at l ! 200.

The difference in the anisotropies on scales l ! 200
is quite large (on average about 25-30% for three cou-
pled neutrinos), well outside the errors of the current
WMAP data. However, this does not mean than the
coupled neutrino scenario is already excluded. Indeed,
it must be kept in mind that there are many cosmolog-
ical (“nuisance”) parameters that can be adjusted, such
as the baryon, dark matter and dark energy densities,
the spectrum of primordial fluctuations, and others. By
adjusting these parameters, it may be possible to undo
most of the effect of the neutrino self-coupling.

This issue of “degeneracies” between different param-
eters is of course well known in cosmology. A sim-
ple illustration of it is given in Fig. 2 where we show
changing the CMB power spectra as one changes the to-
tal number of freely streaming neutrinos. While sim-
ply changing NFS to 7 produces a large shift in the
position of the peaks (because of the faster expansion
in the radiation era as discussed above), the effect can
be compensated by changing other parameters such that
the redshift of equality is preserved [33]. 1 + zeq =
4.05×104Ωmh2/(1+0.6905Neff

ν /3.04) is fixed while vary-
ing Neff

ν by scaling h2 to compensate for the increase in
Neff

ν , while also fixing the physical baryon density Ωbh2

and Ωm. Indeed, the physical quantities that are mea-
sured in CMB are dimensionless quantities (angles on
the sky), hence they depend on the ratios of the physical
densities, etc. See, e.g., [61] for further discussion.

Not all effects follow this simple argument. For exam-
ple, the Silk damping does not, as it involves a physical
dimensionful constant, the Thompson cross section. The
faster expansion of the universe with more neutrinos im-
plies more Silk damping in the high multipoles of the
CMB [96]. This can be partially compensated by adjust-
ing the Helium fraction, as discussed in [34]. It should be
kept in mind that this mechanism is limited by a variety
of astrophysical considerations. We will return to this
topic in Sect. VB.

The real challenge is to establish the size of the resid-
ual differences of the CMB predictions in the two sce-
narios, after appropriately adjusting the “nuisance” pa-
rameters, in comparison with the resolution of the exper-
iments. These residual differences turn out to be much
smaller than the differences seen in Fig. 1. This fact ren-
ders difficult writing down a simple estimate for the pre-
dicted sensitivity of the present and future experiments
using order-of-magnitude arguments and necessitates a
detailed scan of the multidimensional parameter space.

In Sect. VB we show how well the effects of amplitude
suppression (6) and phase shift (7) can be compensated
by adjusting the cosmological parameters and how big
the residual differences are. We will also see which CMB
multipoles are essential for testing the neutrino sector
and how robust our predictions for Planck are. A com-
plete analysis of this type has not been done before.

We now present the results of our numerical studies.
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FIG. 2: Effect of extra neutrinos on the CMB multipole spec-
trum. The central black curve is the spectrum with the best fit
parameters from WMAP3, the top green curve the spectrum
with 7 freely streaming neutrinos, and the lowermost magenta
curve results when the total number of freely streaming neu-
trinos is 7, but zeq is kept fixed by varying h2.
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FIG. 3 — Likelihood contours plots in the ωrel − ωm, ωrel − ωb,
ωrel − ns planes.
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FIG. 4 — Likelihood probability distribution function for the red-
shift of equality.

ization/maximization algorithm described above. By inte-
gration of this probability distribution function we obtain
zeq = 3100+600

−400 at 68% c.l., i.e. a late-time equality, in agree-
ment with a low-density universe.

External constraints. It is interesting to investigate how
well constraints from independent non-CMB datasets can
break the above degeneracy between ωrel and ωm. The su-
pernovae luminosity distance is weakly dependent on ωrel

(see however Zentner & Walker 2001), and the bounds ob-
tained on Ωm can be used to break the CMB degeneracy.
Including the SN-Ia constraints on the Ωm − ΩΛ plane,
0.8Ωm − 0.6ΩΛ = −0.2 ± 0.1 (Perlmutter et al. 1999), we
find ωrel/ωrel(∆N = 0) = 1.120.35

−0.42 at the 2 − σ confidence
level.

It is also worthwile to include constraints from galaxy
clustering and local cluster abundances. The shape of the
matter power spectrum in the linear regime for galaxy clus-
tering can be characterized by the shape parameter Γ ∼
Ωmh/

√

(1 + 0.135∆N)e−(Ωb(1+
√

2h/Ωm)−0.06). From the ob-
served data one has roughly (see e.g., Bond & Jaffe 1998)
0.15 ≤ Γ + (ns − 1)/2 ≤ 0.3.

The degeneracy between ωm and ωrel in the CMB can-
not be broken trivially by inclusion of large-scale structure
data, because a similar degeneracy affects the LSS data as
well (see e.g. Hu et al 1999). However, the geometrical de-
generacy is lifted in the matter power spectrum, and accu-
rate measurements of galaxy clustering at very large scales
can distinguish between various models. This is exempli-
fied in the bottom panel of Fig. 1, where we plot 3 matter
power spectra with the same cosmological parameters as in
the top panel, togheter with the decorrelated matter power
spectrum obtained from the PSCz survey.

The inclusion of the above (conservative) value on Γ
gives ωrel/ωrel(∆N = 0) = 1.400.49

−0.56 , that is less restrictive
than the one obtained with the SN-Ia prior.

A better constraint can be obtained by including a prior
on the variance of matter perturbations over a sphere of
size 8h−1 Mpc, derived from cluster abundance observa-
tions. Comparing with σ8 = (0.55 ± 0.05)Ω−0.47

m , we obtain
ωrel/ωrel(∆N = 0) = 1.270.35

−0.43 , again at the 2 − σ confi-
dence level.

c© 2001 RAS, MNRAS 000, 1–8
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A. characteristic shape of matter power spectrum today
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Figure 6. Projected 68% and 95% confidence levels from the Monte Carlo
(coloured/shaded) and the Fisher matrix (black lines) methods, for Planck with
lensing extraction and the extended, eleven-parameter ΛMDM model of section 6.
The Monte Carlo results of the figure 5 (for Planck without lensing extraction)
are shown again for comparison (blue dashed lines). The diagonal plots show the
corresponding marginalized probabilities for each cosmological parameter, with
lensing extraction (red) and without (blue dashed).

In this paper, we have shown that the likelihood function can be highly non-Gaussian,
particularly with respect to the neutrino mass and the dark matter density, and, as a result,
the CosmoMC analysis can give results that are very different from the Fisher matrix
counterparts. For prospective Planck data without lensing extraction and assuming a
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Planck (with lensing extraction):

5

2. P 3@1
1% , consisting of three data points at an effec-

tive redshift of 3 at wavenumbers 0.002 s/km, 0.009
s/km and 0.02 s/km, with 1% fractional errors,

3. P 3@1
1% , consisting of three data points at each of

three redshifts of 2, 3 and 3.5 at wavenumbers of
0.002 s/km, 0.009 s/km and 0.02 s/km, with 1%
fractional errors, and

4. P 3@1
5% , consisting of three data points at each of

three redshifts of 2, 3 and 3.5 at wavenumbers of
0.002 s/km, 0.009 s/km and 0.02 s/km, with 5%
fractional errors.

The datasets are constructed by evolving the z = 0
matter power spectrum output from camb at the appro-
priate scale back to the appropriate redshift using the
standard formula for the growth of linear inhomogeneities
with the appropriate parameters for the assumed back-
ground model. This “data” is fed into a version of the
lya.f90 module of cosmomc in order to perform the
likelihood calculation for models.

Running {6+m+nrun}-parameter chains against CW
0.06

and faked Lyman-α datasets yields the limits shown in
Table I for

∑

mν at 95% confidence.
Corresponding one-dimensional likelihood plots are

shown in Fig. 3. Note that all curves peak in the vicin-
ity of the added neutrino mass of 0.06 eV. Fig. 4 shows
how adding future Lyman-α data to Planck data breaks
degeneracies and thus substantially improves the limits
shown in Fig. 2. However, none of the curves in Fig. 3
tend to zero as the neutrino mass tends to zero and thus
none of the dataset combinations is capable of unam-
biguously detecting neutrino mass in the minimal normal
hierarchy model.

In this paper we have focussed on combining cmb and
Lyman-α data for the reasons given in the introduction.
In light of the above results we also considered the ad-
ditional degeneracy-breaking effects that a future galaxy
survey might provide. Combined with our most opti-
mistic P 3@3

1% Lyman-α dataset along with Planck, such
a galaxy survey would have to effectively measure Ωmh
to better than 2% in order to yield a 95% confidence
positive detection of neutrino mass for the minimal hi-
erarchy (assuming the improved constraint comes from
degeneracy-breaking alone). For comparison, the SDSS
and 2dF galaxy surveys constrain Ωmh to an accuracy
of about 10% [28, 29] and so substantially larger red-
shift surveys would be required to constrain the shape of
the matter power spectrum to the level required to con-
strain a minimal hierarchy. At present, the best prospect
seems to be a large-scale galaxy survey of ∼ 109 galaxies
detected with the SKA over the redshift range 0−1.5 [8].

X. CONCLUSIONS

In this paper we have studied how Planck, in com-
bination with a Lyman-α based measure of power on

TABLE I: A Table showing the limits on
P

mν obtained using
the assumed futuristic Lyman-α datasets (denoted by the P ’s)
and Planck dataset (denoted by the C).

P
1@1
1% P

3@1
1% P

3@3
1% P

3@3
5%

C
W
0.06 0.13 eV 0.12 eV 0.11 eV 0.14 eV

FIG. 3: A plot of the marginalized likelihoods for a single
neutrino of mass m with assumed future datasets as discussed
in the text. All curves use the C

W
0.06 Planck dataset. As for

the Lyman-α dataset used, black (solid) corresponds to P
3@3
5% ,

red (dot-dash) to P
1@1
1% , green (short-dash) to P

3@1
1% and blue

(long-dash) to P
3@3
1% .
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FIG. 4: A 2D contour plot indicating how a partial parame-
ter degeneracy using only Planck data is lifted when Lyman-
α data is added. 68% and 95% confidence intervals are il-
lustrated for the following three datasets (from broadest to
tightest): blue, Planck alone; green, Planck with P

3@3
5% ; red,

Planck with P
3@3
1% .
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