13 March 2008 Séminaire commun X-IPN

Minimal Dark Matter

Marco Cirelli (CNRS, IPhT-CEA/Saclay)

in collaboration with: N.Fornengo (Torino) A.Strumia (INFN Pisa) M.Tamburini (Pisa) R.Franceschini (Pisa) Nuclear Physics B 753 (2006) and Nuclear Physics B 787 (2007) and 0802.3378 (2008)

Contents

- (my point of view on) the status of DM and of DM candidates
- change direction: Minimal DM!
 - MDM properties and viability
- MDM detection and phenomenology

The cosmic inventory

Most of the Universe is Dark

 $\left(\Omega_x = \frac{\rho_x}{\rho_c}; \text{ CMB first peak} \Rightarrow \Omega_{\text{tot}} = 1 \text{ (flat)}; \text{ HST } h = 0.71 \pm 0.07 \right)$

1) galaxy rotation curves

$\Omega_{ m M}\gtrsim 0.1$

2) clusters of galaxies

- "rotation curves"
- gravitation lensing
- X-ray gas temperature

$\Omega_{\rm M} \sim 0.2 \div 0.4$

"bullet cluster" - NASA astro-ph/0608247 [further developments]

1) galaxy rotation curves

$\Omega_{ m M}\gtrsim 0.1$

2) clusters of galaxies

$\Omega_{\rm M} \sim 0.2 \div 0.4$

3) CMB+LSS(+SNIa:)

WMAP-3yrBoomerangACbarDASICBIVSASDSS, 2dFRGSLyA Forest CroftLyA Forest SDSS

$\Omega_{\rm M} \approx 0.26 \pm 0.05$

M.Cirelli and A.Strumia, astro-ph/0607086

1) galaxy rotation curves

$\Omega_{ m M}\gtrsim 0.1$

2) clusters of galaxies

$\Omega_{\rm M} \sim 0.2 \div 0.4$

3) CMB+LSS(+SNIa:)

WMAP-3yr Boomerang ACbar DASI CBI VSA SDSS, 2dFRGS LyA Forest Croft LyA Forest SDSS

$\Omega_{\rm M} \approx 0.26 \pm 0.05$

1) galaxy rotation curves

 $\Omega_{
m M}\gtrsim 0.1$

2) clusters of galaxies

$\Omega_{\rm M} \sim 0.2 \div 0.4$

details

details

3) CMB+LSS(+SNIa:)

 $\Omega_{\rm M}\approx 0.26\pm 0.05$

DM is there.

Most likely a weakly int., massive, neutral, stable relic particle.

has the correct relic abundance today!

Boltzmann eq. in the Early Universe:

$$\Omega_X \approx \frac{6 \ 10^{-27} \mathrm{cm}^3 \mathrm{s}^{-1}}{\langle \sigma_{\mathrm{ann}} v \rangle}$$

Weak cross section:

$$\langle \sigma_{\rm ann} v \rangle \approx \frac{\alpha_w^2}{M^2} \approx \frac{\alpha_w^2}{1 \,{\rm TeV}^2} \Rightarrow \Omega_X \sim \mathcal{O}(\text{few } 0.1)$$

has the correct relic abundance today!

Boltzmann eq. in the Early Universe:

 $\Omega_X \approx \frac{6 \ 10^{-27} \mathrm{cm}^3 \mathrm{s}^{-1}}{\langle \sigma_{\mathrm{ann}} v \rangle}$

Weak cross section:

$$\langle \sigma_{\rm ann} v \rangle \approx \frac{\alpha_w^2}{M^2} \approx \frac{\alpha_w^2}{1 \, {\rm TeV}^2} \Rightarrow \Omega_X \sim \mathcal{O}(\text{few } 0.1)$$

(or we would have seen it...)

has the correct relic abundance today!

Boltzmann eq. in the Early Universe:

 $\Omega_X \approx \frac{6 \ 10^{-27} \text{cm}^3 \text{s}^{-1}}{\langle \sigma_{\text{ann}} v \rangle}$

Weak cross section:

$$\langle \sigma_{\rm ann} v \rangle \approx \frac{\alpha_w^2}{M^2} \approx \frac{\alpha_w^2}{1 \,{\rm TeV}^2} \Rightarrow \Omega_X \sim \mathcal{O}(\text{few } 0.1)$$

(or we would have seen it...)

> at least on cosmological time scales, i.e.

Theories beyond the SM have ambitious goals (hierarchy prob, EWSB, unification). As a *byproduct*, they can provide DM candidates at the EW scale.

Popular candidates:

SuperSymmetric LSP, Little Higgs' heavy photon, Extra dimensional LKP...

Theories beyond the SM have ambitious goals (hierarchy prob, EWSB, unification). As a *byproduct*, they can provide DM candidates at the EW scale.

Popular candidates:

SuperSymmetric LSP, Little Higgs' heavy photon, Extra dimensional LKP...

...<u>BUT</u>:

(i) these theories already start to be uncomfortably fine tuned ("little hierarchy problem", ft in LH etc)

Theories beyond the SM have ambitious goals (hierarchy prob, EWSB, unification). As a *byproduct*, they can provide DM candidates at the EW scale.

Popular candidates:

SuperSymmetric LSP, Little Higgs' heavy photon, Extra dimensional LKP...

...<u>BUT</u>:

(i) these theories already start to be **uncomfortably fine tuned** ("little hierarchy problem", ft in LH etc)

(ii) these theories have many parameters,DM phenomenology is unclear (scatter plots)

Theories beyond the SM have ambitious goals (hierarchy prob, EWSB, unification). As a *byproduct*, they can provide DM candidates at the EW scale.

Popular candidates:

SuperSymmetric LSP, Little Higgs' heavy photon, Extra dimensional LKP...

...<u>BUT</u>:

(i) these theories already start to be **uncomfortably fine tuned** ("little hierarchy problem", ft in LH etc)

(ii) these theories have many parameters,DM phenomenology is unclear (scatter plots)

(iii) DM stability is imposed by hand (R-parity, T-parity, KK parity)

Minimalistic approach

and systematically search for the ideal DM candidate...

Minimalistic approach

On top of the SM, add only one extra multiplet $\mathcal{X}=\begin{pmatrix} \chi_1\\ \chi_2 \end{pmatrix}$

 $\mathscr{L} = \mathscr{L}_{\rm SM} + \bar{\mathcal{X}}(i\mathcal{D} + M)\mathcal{X}$ $\mathscr{L} = \mathscr{L}_{\rm SM} + |D/\mathcal{X}|^2 - M^2 |\mathcal{X}|^2$

if \mathcal{X} is a fermion

if ${\mathcal X}$ is a scalar

gauge interactions $\mathcal{X} \xrightarrow{W^{\pm}, Z, \gamma} [g_2, g_1, Y]$

the only parameter, and will be fixed by $\Omega_{\rm DM}.$

(other terms in the scalar potential)

(one loop mass splitting)

and systematically search for the ideal DM candidate...

The ideal DM candidate is weakly int., massive, neutral, stable

The ideal DM candidate is

these are all possible choices: $n \leq 5$ for fermions $n \leq 7$ for scalars to avoid explosion in the running coupling $\alpha_2^{-1}(E') = \alpha_2^{-1}(M) - \frac{b_2(n)}{2\pi} \ln \frac{E'}{M}$

 $(\underline{6} \text{ is similar to } \underline{4})$

The ideal DM candidate is weakly int., massive, neutral, stab

$SU(2)_L$	$U(1)_Y$	spin
<u>2</u>	1/2	
9	0	
<u>5</u>	1	
	1/2	
<u>4</u>	3/2	
	0	
<u>5</u>	1	
	2	
<u>7</u>	0	

Each multiplet contains a neutral component with a proper assignment of the hypercharge, according to

$$Q = T_3 + Y \equiv 0$$

e.g. for
$$n = 2$$
: $T_3 = \begin{pmatrix} +\frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} \Rightarrow |Y| = \frac{1}{2}$

e.g. for n = 3: $T_3 = \begin{pmatrix} +1 \\ 0 \\ -1 \end{pmatrix} \Rightarrow |Y| = 0 \text{ or } 1$

etc.

The ideal DM candidate is weakly int., massive, neutral, stat

$SU(2)_L$	$U(1)_Y$	spin
9	1/9	S
<u></u>	1/2	F
	\cap	S
9	0	F
<u>0</u>	1	S
	1	F
	1/9	S
4		F
<u>4</u>	າ/ງ	S
	$\left. \partial \right/ Z$	F
	0	S
	0	F
	-	S
<u>5</u>	1	F
	0	S
	2	F
<u>7</u>	0	S

Each multiplet contains a neutral component with a proper assignment of the hypercharge, according to

$$Q = T_3 + Y \equiv 0$$

e.g. for
$$n = 2$$
: $T_3 = \begin{pmatrix} +\frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} \Rightarrow |Y| = \frac{1}{2}$

e.g. for n = 3: $T_3 = \begin{pmatrix} +1 \\ 0 \\ -1 \end{pmatrix} \Rightarrow |Y| = 0 \text{ or } 1$

etc.

The ideal DM candidate is weakly int., massive, neutral, stable

$SU(2)_L$	$U(1)_Y$	spin	M (TeV)
9	1/9	S	0.43
<u> </u>	1/2	F	1.2
	0	S	2.0
9	0	F	2.6
<u>0</u>	1	S	1.4
	1	F	1.8
	1/9	S	2.4
		F	2.5
<u>4</u>	3/2	S	2.4
		F	2.5
	0	S	5.0
	U	F	4.5
_	1	S	3.5
<u>5</u>	1	F	3.2
	0	S	3.5
	2	F	3.2
<u>7</u>	0	S	8.5

The mass M is determined by the relic abundance: $\Omega_{\rm DM} = \frac{6 \ 10^{-27} {\rm cm}^3 {\rm s}^{-1}}{\langle \sigma_{\rm ann} v \rangle} \cong 0.24$

for \mathcal{X} scalar $\langle \sigma_A v \rangle \simeq \frac{g_2^4 (3 - 4n^2 + n^4) + 16 Y^4 g_Y^4 + 8g_2^2 g_Y^2 Y^2 (n^2 - 1)}{64\pi M^2 g_X}$

(- computed for $M \gg M_{Z,W}$)

The ideal DM candidate is weakly int., massive, neutral, stable

$SU(2)_L$	$U(1)_Y$	spin	$M ({ m TeV})$
9	1/9	S	
		F	1.0
	0	S	2.5
9	0	F	2.7
<u>0</u>	1	S	
	1	F	
	1/9	S	
4		F	
<u>4</u>	3/2	S	
		F	
	0	S	9.4
	0	F	10
	-	S	
<u>6</u>	1	F	
	2	S	
	2	F	
<u>7</u>	0	S	25

Non-perturbative corrections (and other smaller corrections) (more later) induce modifications:

$$\langle \sigma_{\mathrm{ann}} v \rangle \rightsquigarrow R \cdot \langle \sigma_{\mathrm{ann}} v \rangle + \langle \sigma_{\mathrm{ann}} v \rangle_{p-\mathrm{wave}}$$

with $R \sim \mathcal{O}(\mathrm{few}) \to \mathcal{O}(10^2)$

	The ideal DM candidate is										
	Wea	akly				e, neutral, stable					
	$SU(2)_L$	$U(1)_Y$	spin	$M ({ m TeV})$	$\Delta M({ m MeV})$	EW loops induce					
14 2 2 4 6 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9	1/9	S		348	a mass splitting ΛM					
	<u></u>		F	1.0	342	incide the n-unlet tree					
		0	S	2.5	166	TTPICE PITE TLabler. Isos					
	9	0	F	2.7	166	$\sim 1 \sim W, Z, \gamma$					
	3	1	S		540	N					
		<u> </u>	F		526	$x \rightarrow x$					
	1/9	1 /9	S		353						
	1		F		347	$M_Q - M_{Q'} = \frac{\alpha_2 M}{4\pi} \left\{ (Q^2 - Q'^2) s_W^2 f(\frac{M_Z}{M}) \right\}$					
	<u>4</u>	3/2	S		729	$+ (Q - Q')(Q + Q' - 2Y) \left[f(\frac{M_W}{M}) - f(\frac{M_Z}{M}) \right]$					
			F		712	writh $f(r) \xrightarrow{r \to 0} 2\pi r$					
		\square	S	9.4	166	$J(I) \longrightarrow -2\pi I$					
		0	F	10	166						
		1	S		537	I The neutral component					
	<u>5</u>	1	F		534	is the lightest					
		-0	S		906	DM ⁺					
			F		900	$\uparrow_{\Lambda - \Lambda / I}$					
	<u>7</u>	0	S	25	166	DM^0					

)] }

			The ide	al DM c	andida	teis
Wea	akly					tral, stable
$SU(2)_L$	$U(1)_Y$	spin	$M ({ m TeV})$	$\Delta M({ m MeV})$	decay ch.	List all allowed SM couplings
9	1/9	S		348	EL	$1/2 - 1 \ 1/2$
<u></u>	1/2	F	1.0	342	$EH \leftarrow$	-e.g. $\mathcal{X}EH$
	Ο	S	2.5	166	HH^*	$\frac{2}{2}$ $\frac{1}{2}$ e
2	0	F	2.7	166	LH	<i>X</i>
<u>ਹ</u>	1	S		540	HH, LH	•• h
	1	F		526	LH	
	1/9	S		353	HHH^*	$1/2 - 1/2 \ 1/2 - 1/2$
1	1/Z	F		347	(LHH^*)	– e.g. $~\mathcal{X}LHH^{*}$
<u>4</u>	2/9	S		729	HHH	$\frac{4}{2} \frac{2}{2} \frac{2}{2}$
	J/ 2	F		712	(LHH)	$\sim 12 \text{ T}_{\circ} \text{V}^{-3}$
	0	S	9.4	166	(HHH^*H^*)	$ au \sim \Lambda$ Lev $\ll t_{ m universe}$
	0	F	10	166		
	-	S		537	$(HH^*H^*H^*)$	
<u>5</u>	1	F		534		
	-0	S		906	$(\overline{H^*H^*H^*H^*})$	
	2	F		900		
7	0	S	25	166		

The ideal DM candidate is weakly int., massive, neutral, stable M (TeV) ΔM (MeV) decay ch. List all allowed SM couplings: $SU(2)_L$ $U(1)_Y$ spin 348 ELS $1/2 - 1 \ 1/2$ 1/22 342 F1.0 EH \leftrightarrow e.g. $\mathcal{X}EH$ 166 S2.5 HH^* 0 *x*_____h LH1662.7F3 S $\overline{HH}, \overline{LH}$ 5401 F526 LHS353 HHH^* 1/2 - 1/2 1/2 - 1/21/2 $(LHH^*) \leftarrow e.g. \quad \mathcal{X}LHH^*$ 347 F4 S729 HHH3/2dim=5 operator, induces F712 (LHH) $\tau \sim \Lambda^2 \text{TeV}^{-3} \ll t_{\text{universe}}$ (HHH^*H^*) S9.4 1660 for $\Lambda \sim M_{\rm Pl}$ F166 10 $(HH^*H^*H^*)$ S537 1 No allowed decay! 5 F534Automatically $(H^*H^*H^*H^*$ 906 Sstable! 2 F900 0 S 25166

			The ide	al DM c	andida	teis
Wea	akly					itral, stable
$SU(2)_L$	$U(1)_Y$	spin	$M ({\rm TeV})$	$\Delta M({ m MeV})$	decay ch.	and
9	1/9	S		348	EL	not excluded
<u> </u>	1/2	F	1.0	342	EH	by direct searches!
	0	S	2.5	166	HH^*	
2	0	F	2.7	166	LH	
บิ	1	S		540	HH, LH	
	1	F		526	LH	
	1/9	S		353	HHH^*	
1		F		347	(LHH^*)	
<u>4</u>	3/9	S		729	HHH	
	5/2	F		712	(LHH)	
	0	S	9.4	166	(HHH^*H^*)	
	U	F	10	166		
F	1	S		537	$(HH^*H^*H^*)$	
<u>C</u>	-	F		534		
	9	S		906	$(\overline{H^*H^*H^*}H^*)$	
		F		900		
7	0	\overline{S}	25	166		

The ideal DM candidate is											
weakly int., massive, neutral, stable,											
$SU(2)_L$	$U(1)_Y$	spin	$M ({\rm TeV})$	$\Delta M({ m MeV})$	decay ch.	and					
9	1/9	S		348	EL	not excluded					
<u> </u>	1/2	F	1.0	342	EH	by direct searches!					
	0	S	2.5	166	HH^*	Opendidates with V/					
2	0	F	2.7	166	LH	Candidates with $Y \neq 0$					
<u>0</u>	1	S		540	HH, LH	interact as					
	1	F		526	LH						
	1/9	S		353	HHH^*	A the second t					
1		F		347	(LHH^*)	$\leq Z^0$					
<u>4</u>	3/9	S		729	HHH						
	5/2	F		712	(LHH)						
	0	S	9.4	166	(HHH^*H^*)	$ \alpha^2 \sqrt{2} \sqrt{2}$					
	0	F	10	166		$\sigma \simeq G_F M_{\mathcal{N}} Y$					
F	1	S		537	$(HH^*H^*H^*)$	» present bounds کو CDMS					
<u>6</u>	-	F		534		0.8. 01110					
	9	S		906	$(H^*H^*H^*H^*)$						
		F		900		need $Y = 0$					
7	0	S	25	166							

			The ide	al DM c	andida	teis
Wea	akly					itral, stable
$SU(2)_L$	$U(1)_Y$	spin	$M ({\rm TeV})$	$\Delta M({ m MeV})$	decay ch.	and
9	1/9	S		348	EL	not excluded
<u> </u>	1/2	F	1.0	342	EH	by direct searches!
	0	S	2.5	166	HH^*	
2	0	F	2.7	166	LH	
บิ	1	S		540	HH, LH	
	1	F		526	LH	
	1/9	S		353	HHH^*	
1		F		347	(LHH^*)	
<u>4</u>	3/9	S		729	HHH	
	5/2	F		712	(LHH)	
	0	S	9.4	166	(HHH^*H^*)	
	U	F	10	166		
F	1	S		537	$(HH^*H^*H^*)$	
<u>C</u>	-	F		534		
	9	S		906	$(\overline{H^*H^*H^*}H^*)$	
		F		900		
7	0	\overline{S}	25	166		

The ideal DM candidate is										
Wea	akly					tral, stable				
$SU(2)_L$	$U(1)_Y$	spin	$M ({\rm TeV})$	$\Delta M({ m MeV})$	decay ch.	and				
9	1/9	S		348	EL	not excluded				
<u> </u>	1/4	F	1.0	342	EH					
	0	S	2.5	166	HH^*					
2	0	F	2.7	166	LH					
<u>0</u>	1				HH, LH					
		F		526	LH					
	1/9	S		353	HHH^*					
1					(LHH^*)					
<u>4</u>					HHH					
	0/2	F		712	(LHH)					
	\cap	S	9.4	166	(HHH^*H^*)					
	0	F	10	166						
F	1									
<u>6</u>	L	F		534	—					
	9	$\ S$		906	$(H^*H^*H^*H^*)$					
		$\mid F \mid$		900	—					
<u>7</u>	0	\overline{S}	25	166						

The ideal DM candidate is										
wea	akly					itral	, stable			
$SU(2)_L$	$U(1)_Y$	spin	$M ({\rm TeV})$	$\Delta M({ m MeV})$	decay ch.		and			
9	1/9	S		348	EL	not	excluded			
<u> </u>		F	1.0	342	EH					
	0	S	2.5	166	HH^*					
2		F	2.7	166	LH					
<u>ਹ</u>	1	S		540	HH, LH					
	1	F		526	LH					
	1/9	S		353	HHH^*					
4					(LHH^*)					
<u>4</u>										
		$\mid F \mid$			(LHH)					
	\cap	S	9.4	166	(HHH^*H^*)					
	0	F	10	166						
F	1									
<u>6</u>	L	F		534	—					
	9	$\ S$		906						
		F		900	—					
<u>7</u>	0	S	25	166						

The ideal DM candidate is									
Wea	akly					tral, stable			
$SU(2)_L$	$U(1)_Y$	spin	$M ({\rm TeV})$	$\Delta M({ m MeV})$	decay ch.	and			
9	1/9	S		348	EL	not excluded			
<u> </u>	1/4	F	1.0	342	EH				
	0	S	2.5	166	HH^*				
2	0	F	2.7	166	LH				
<u>9</u>	1	S		540	HH, LH				
	⊥ 	F		526	LH				
					HHH^*				
					(LHH^*)				
<u>4</u>					HHH				
	0/2	F		712	(LHH)				
	0	S	9.4	166	(HHH^*H^*)				
	U	F	10	166	—	- We have a			
K					$(HH^*H^*H^*)$	winner!			
<u>0</u>	-	F		534	—	tod.			
	2	S		906	$(H^*H^*H^*H^*)$	her			
		F		900					
$\overline{}$	0	\overline{S}	25	166	_	\leftarrow and a 2° place			

If you want to cure ill candidates...

 $Y \neq 0 \ :$ introduce some mechanism to forbid coupling with Z^0 anyway

e.g. mixing with an extra singlet splits the 2 components of \mathcal{X} ; if splitting is large enough, NC scattering is kinematically forbidden...

stability: impose some symmetry to forbid decays (e.g. R-parity)...

...the case of SuSy higgsino

Recap:

A fermionic $SU(2)_L$ quintuplet with Y = 0provides a DM candidate with M = 10 TeV, which is fully successful: - neutral - neutral - **automatically** stable and not yet discovered by DM searches.

A scalar $SU(2)_L$ eptaplet with Y = 0 also does.

(Other candidates can be cured via non-minimalities.)
Detection and Phenomenology

DM detection

direct detection

indirect

production at colliders

/ from annihil in galactic halo or center
 (line + continuum)

from annihil in galactic halo or center from annihil in galactic halo or center from annihil in galactic halo or center $\bar{\nu}, \bar{\nu}$ from annihil in massive bodies

tracing in Cosmic Rays?

1. Direct Detection one-loop interactions

$$\mathscr{L}_{\text{eff}}^{W} = (n^{2} - (1 - 2Y)^{2}) \frac{\pi \alpha_{2}^{2}}{16M_{W}} \sum_{q} \left[(\frac{1}{M_{W}^{2}} + \frac{1}{m_{h}^{2}}) [\bar{\mathcal{X}}\mathcal{X}] m_{q} [\bar{q}q] - \frac{2}{3M} [\bar{\mathcal{X}}\gamma_{\mu}\gamma_{5}\mathcal{X}] [\bar{q}\gamma_{\mu}\gamma_{5}q] \right]$$

larger for higher n

$$\begin{array}{ll} \mbox{Spin-Independent} & \mbox{Spin-Dependent} \\ \propto \frac{m_q}{M_W^3} & \propto \frac{1}{MM_W} \\ & \mbox{$\langle N|\sum_q m_q \bar{q}q | N \rangle \equiv fm_N$} & \left(f \simeq \frac{1}{3}\right) \end{array}$$

1. Direct Detection

(NB: no free parameters => one predicted point per candidate)

[skip to conclusions]

2. Production at colliders

$$\hat{\sigma}_{u\bar{d}} = \frac{g_{\mathcal{X}}g_2^4(n^2 - 1)}{13824 \ \pi \hat{s}} \beta \cdot \begin{cases} \beta^2 \\ 3 - \beta^2 \end{cases}$$

if \mathcal{X} is a fermion if $\mathcal X$ is a scalar

(similarly $\hat{\sigma}_{u\bar{u}}, \hat{\sigma}_{d\bar{d}}, \hat{\sigma}_{d\bar{u}}$) $\beta = \sqrt{1 - 4M^2/\hat{s}}$ Large production for small M. $2 \times \text{LHC}$ to produce heavy candidates.

A clean signature:

 $\tau \simeq 44 \text{cm}/(n^2 - 1)$

$$BR_e = 2.05\%$$
$$BR_\mu = 0.25\%$$

Events at LHC $\int \mathcal{L} dt = 100/\text{fb}$ $(0.7 \div 2) \cdot 10^3$ $120 \div 260$ $0.2 \div 1.0$ $0.4 \div 2.2$ $11 \div 33$ $26 \div 80$ $0.1 \div 0.7$ $3.6 \div 18$ $0.1 \div 0.6$ $2.7 \div 14$ $\ll 1$ $\ll 1$ $\ll 1$

Interlude: the "DMtron"

Can one have CC DM interactions? (tree level!)

Need to provide $\Delta M = M_{\mathcal{X}^+} - M_{\mathcal{X}} = 166 \text{ MeV}$

Accelerate nuclei and use DM as diffuse target.

$$\hat{\sigma}(a \,\mathcal{X} \to a' \,\mathcal{X}^{\pm}) = \sigma_0 \frac{n^2 - 1}{4} \left[1 - \frac{\ln(1 + 4E^2/M_W^2)}{4E^2/M_W^2} \right]$$
$$\sigma_0 = \frac{G_F^2 M_W^2}{\pi} = 1.1 \, 10^{-34} \, \text{cm}^2$$

$$\frac{dN}{dt} = \varepsilon N_p \sigma \frac{\rho_{\rm DM}}{M} = \varepsilon \frac{10}{\rm year} \frac{N_p}{10^{20}} \frac{\rho_{\rm DM}}{0.3 {\rm GeV/cm^3}} \frac{{\rm TeV}}{M} \frac{\sigma}{3\sigma_0}$$

not unreasonable? tagging χ^+

/ number of targets number of bullets "efficiency"

[skip to conclusions]

$$+ W^{\pm}, Z \to \bar{p}, e^+, \gamma \dots$$

(channels for MDM with Y=0)

Enhanced cross section in vector bosons due to resummed diagrams when Non-Relativistic $\overline{X}X$ are a "bound state":

 $\alpha_2 M_W \sim \Delta M \approx E_B \sim \alpha_2^2 M$

Hisano et al., 2004, 2005 Cirelli, Strumia, Tamburini, 2007

Results for positrons:

Astro uncertainties:

- propagation model
- DM <u>halo</u> profile
- <u>boost</u> factor B

DM halo model: NFW

Results for positrons:

Astro uncertainties:

- propagation model
- DM <u>halo</u> profile
- <u>boost</u> factor B

Results for positrons:

Astro uncertainties:

- propagation model
- DM <u>halo</u> profile
- <u>boost</u> factor B

Distinctive signal, quite robust vs astro, awaiting PAMELA, AMS02.

3. Indirect Detection Results for anti-protons:

Astro uncertainties:

- propagation model
- DM <u>halo</u> profile
- <u>boost</u> factor B

Results for anti-protons:

Astro uncertainties:

- propagation model
- DM <u>halo</u> profile
- <u>boost</u> factor B

\overline{p} propagation model: med

Results for anti-protons:

Astro uncertainties:

- propagation model
- DM <u>halo</u> profile
- <u>boost</u> factor B

Distinctive signal, more dependent on astro, PAMELA prelim., AMSO2.

4. Tracing in Cosmic Rays?

at U high Energy: - high production - χ^{\pm} lives long

Icecube

MDM can cross the Earth with chain regeneration (like ν_{τ}).

Small ΔM makes χ^{\pm} long-living.

A clear track! DM is no more dark!

But: - production?

requires non-standard acceleration mechanism

- flux? few events/km² yr above 10¹⁷ eV
- particle ID?

it's fat and fast, but looks like a light slow muon

$$\frac{dE}{dx} \propto \frac{1}{M}E$$

Conclusions

The DM problem requires physics beyond the SM.

Introducing the minimal amount of it, we find some fully successful DM candidates: massive, neutral, *automatically* stable.

The "best" is the fermionic $SU(2)_L$ quintuplet with Y = 0. (M = 10 TeV)

Its phenomenology is precisely computable:

- can be found in next gen direct detection exp's,
- too heavy to be produced at LHC,
- can give signals in indirect detection exp's.

(Other candidates have different properties.)

Back-up slides

Comparison with SplitSuSy-like models

A-H, Dimopoulos and/or Giudice, Romanino 2004 Pierce 2004; Arkani-Hamed, Dimopoulos, Kachru 2005 Mahbubani, Senatore 2005

SplitSuSy-like

- Higgsino (a fermion doublet)
- + something else (a singlet)
- stabilization by R-parity
- want unification also
- unification scale is low, need to embed in 5D to avoid proton decay

Mahbubani, Senatore 2005

MDM

- arbitrary multiplet, scalar or fermion
- nothing else (with Y=0)
- automatically stable
- forget unification, it's SM
- nothing

Common feature: the focus is on DM, not on SM hierarchy problem.

The thrilling story of the bullet cluster

Farrar, Rosen (2006) astro-ph/0610298

"The bullet goes too fast!"

With a surprising twist, the bullet cluster that just killed MOND repents and reverts into an advocate of a 5th force in the DM sector, that pulled in the merger.

The thrilling story of the bullet cluster

Farrar, Rosen (2006) astro-ph/0610298

"The bullet goes too fast!"

With a surprising twist, the bullet cluster that just killed MOND repents and reverts into an advocate of a 5th force in the DM sector, that pulled in the merger.

Springel, Farrar (2007) astro-ph/0703232 "Not too fast for the law." In a breath-taking finale, Newton and hydro dynamical laws regain control: the bullet is a uncommon guy (7%), but he is not too fast for them.

The thrilling story of the bullet cluster

Farrar, Rosen (2006) astro-ph/0610298

"The bullet goes too fast!"

With a surprising twist, the bullet cluster that just killed MOND repents and reverts into an advocate of a 5th force in the DM sector, that pulled in the merger.

back

Springel, Farrar (2007) astro-ph/0703232

"Not too fast for the law." In a breath-taking finale, Newton and hydro dynamical laws regain control: the bullet is a uncommon guy (7%), but he is not too fast for them.

The Max Planck Studios in Hollywood seize the opportunity and make a 2.3-billion-years long blockbuster movie.

Non-Minimal terms in the scalar case

Quadratic and quartic terms in \mathcal{X} and H:

 $\lambda_H(\mathcal{X}^*T^a_{\mathcal{X}}\mathcal{X})\left(H^*T^a_HH\right) + \lambda'_H|\mathcal{X}|^2|H|^2 + \frac{\lambda_{\mathcal{X}}}{2}(\mathcal{X}^*T^a_{\mathcal{X}}\mathcal{X})^2 + \frac{\lambda'_{\mathcal{X}}}{2}|\mathcal{X}|^4$

[2]

[3]

- do not induce decays (even number of $\mathcal{X},$ and $\langle \mathcal{X}
 angle = 0$)
- [3] and [4] do not give mass terms

[1]

- after EWSB, [2] gives a common mass $\sqrt{\lambda'_H v} \approx \mathcal{O}(\lesssim 100 \text{ GeV})$ to all \mathcal{X}_i components; negligible for $M = \mathcal{O}(\text{TeV})$

 $\begin{array}{l} \text{negligible for } M = \mathcal{O}(1\text{eV}) \\ \text{- after EWSB, [1] gives mass splitting } \Delta M_{\text{tree}} = \frac{\lambda_H v^2 |\Delta T_{\chi}^3|}{4M} = \lambda_H \cdot 7.6 \ \text{GeV} \frac{\text{TeV}}{M} \\ \text{between } \mathcal{X}_i \text{ components;} \\ \text{assume } \lambda_H \lesssim 0.01 \text{ so that } \Delta M_{\text{tree}} \ll \Delta M \end{array}$

- [1] (and [2]) gives annihilations $\overline{\mathcal{X}}\mathcal{X} \to \overline{H}H$ assume $|\lambda'_H| \ll g_Y^2, g_2^2$ so that these are subdominant

(Anyway, scalar MDM is less interesting.)

[back to Lagrangian] [back to table]

[4]

]	Jeutral			ties"					
neutralino mass matrix in MSSM ($ ilde{B} - ilde{W}^3 - ilde{H}_1^0 - ilde{H}_2^0$ basis)									
$M_{\chi} =$	$\begin{pmatrix} M_1 \\ 0 \end{pmatrix}$	$0\ M_2$	$-m_Z c_\beta s_W$ $m_Z c_\beta c_W$	$m_Z s_\beta s_W$ $-m_Z s_\beta c_W$					
	$-m_Z c_\beta s_W$ $m_Z s_\beta s_W$	$m_Z c_\beta c_W \ -m_Z s_\beta c_W$	$0 \\ -\mu$	$-\mu$ 0					

superpotential

 $\mathcal{W} = -\mu \mathcal{H}_1 \mathcal{H}_2 + \mathcal{H}_1 h_e^{ij} \mathcal{L}_{Li} \mathcal{E}_{Rj} + \mathcal{H}_1 h_d^{ij} \mathcal{Q}_{Li} \mathcal{D}_{Rj} - \mathcal{H}_2 h_u^{ij} \mathcal{Q}_{Li} \mathcal{U}_{Rj}$

soft SUSYB terms

 $\mathcal{L}_{\text{soft}} = -\frac{1}{2} \left(M_1 \bar{\tilde{B}} \tilde{B} + M_2 \bar{\tilde{W}}^a \tilde{W}^a + M_3 \bar{\tilde{G}}^a \tilde{G}^a \right) + \dots$

 $\tan\beta = \frac{\langle v_1 \rangle}{\langle v_2 \rangle}$

Direct detected already?

DAMA annual modulation:

however: -raw data?? -bkgd (Rn emission) -higher bins not expon suppressed

[back to DM detection]

DATA listed top to bottom on plot DAMA 2000 58k kg-days NaI Ann.Mod. 3sigma,w/o DAMA 1996 limit ZEPLIN I Preliminary 2002 result Edelweiss, 32 kg-days Ge 2000+2002+2003 limit CDMS (Soudan) 2004 Blind 53 raw kg-days Ge XENON10 (10 kg) projected sensitivity Bottino et al. Neutralino Configurations (OmegaWIMP < OmegaCDMmin) Bottino et al. Neutralino Configurations (OmegaWIMP >= OmegaCDMmin) CDMSII (Projected) Development ZBG XENON100 (100 kg) projected sensitivity Chattopadhyay et. al Theory results - post WMAP Lahanas and Nanopoulos 2003 Baer et. al 2003 Kim/Nihei/Roszkowski/de Austri 2002 JHEP Ellis et. al Theory region post-LEP benchmark points Masiero, Profumo and Ullio: general Split SUSY Baltz and Gondolo 2003

Direct detected already?

DAMA annual modulation:

however: -raw data?? -bkgd (Rn emission) -higher bins not expon suppressed

[back to DM detection]

Indirect Detection: photons

EGRET excess

however:

- source not centered
- variability...

+ CANGAROO (2004) + HESS (2004)

[back to DM detection]

WMAP "haze"

The Galactic emission found by Finkbeiner (2004) in the WMAP data in excess of the expected foreground Galactic ISM signal may be a signature of such dark matter annihilation.

Indirect Detection: positrons

HEAT excess (1994+95 & 2000)

however:

-the proper HEAT excess is that in cyan,
"impossible" to fit with DM
-the plateau can be instrumental
-flux requires too much DM...

DM halo profiles

From N-body numerical simulations:

$$\rho(r) = \rho_{\odot} \left[\frac{r_{\odot}}{r}\right]^{\gamma} \left[\frac{1 + (r_{\odot}/r_s)^{\alpha}}{1 + (r/r_s)^{\alpha}}\right]^{(\beta - \gamma)/\alpha}$$

Halo model	$\mid \alpha$	eta	γ	r_s in kpc
Cored isothermal	2	2	0	5
Navarro, Frenk, White	1	3	1	20
Moore	1	3	1.16	30

At small r: $ho(r) \propto 1/r^{\gamma}$

cuspy: NFW, Moore smooth: isothermal

DM N-body simulations

2 10⁶ CDM particles, 43 Mpc cubic box

Andrey Kravtsov, cosmicweb.uchicago.edu

DM N-body simulations

2 10⁶ CDM particles, 43 Mpc cubic box

DM N-body simulations

Millennium: 10¹⁰ particles, 500 h⁻¹ Mpc

Springel, Frenk, White, Nature 440 (2006)

3. Indirect Detection

Primary spectra:

3. Indirect Detection

Propagation for antiprotons:

$$\frac{\partial f}{\partial t} - K(T) \cdot \nabla^2 f + \frac{\partial}{\partial z} (\operatorname{sign}(z) f V_{\operatorname{conv}}) = Q - 2h \,\delta(z) \,\Gamma_{\operatorname{ann}} f$$

$$\underset{K(T) = K_0 \beta \,(p/\operatorname{GeV})^{\delta}}{\text{T kinetic energy}} \quad \text{convective wind} \quad \text{spallations}$$

$$\frac{10^3}{\operatorname{max}}$$

Model	δ	K_0 in kpc ² /Myr	L in kpc	$V_{\rm conv}$ in km/s
min	0.85	0.0016	1	13.5
med	0.70	0.0112	4	12
max	0.46	0.0765	15	5

Solution:

$$\Phi_{\bar{p}}(T, \vec{r}_{\odot}) = B \frac{v_{\bar{p}}}{4\pi} \left(\frac{\rho_{\odot}}{M_{\rm DM}}\right)^2 R(T) \sum_{k} \frac{1}{2} \langle \sigma v \rangle_k \frac{dN_{\bar{p}}^k}{dT}$$

Indirect Detection For instance, predicted signal in γ rays:

Photons, $\Omega = 10^{-3}$ 10^{-10} NFW, n = 3 $\Omega \cdot dN_{\gamma}/dE \text{ in } 1/\text{cm}^2 \text{sec TeV}$ M = 2.7 TeVNFW, n = 5 10^{-11} M = 9.6 TeV 10^{-12} isoT 10^{-13} 10^{-14} 0.3 3 10 1 Energy in TeV

Indirect Detection

Boost Factor: local clumps in the DM halo enhance the density, boost the flux from annihilations. Typically: $B \simeq 1 \rightarrow 20$ (10⁴)

In principle, B is different for e⁺, anti-p and gammas,

energy dependent,

dependent on many astro assumptions,

with an energy dependent variance, at high energy for e⁺, at low energy for anti-p.

positrons

antiprotons

20 0

0%

et al.

Javalle

back

T [GeV]

Neutrinos from DM

up-going muons:

[back to DM detection]

"Neutrino Telescopes"

Size: Energy thres: Energy resol: Angle resol: `small'' GeV GeV degree

large tens GeV 10 GeV few degrees large/huge 100 GeV tens GeV tens degrees [back to DM detection]